Detecting semantic changes in Alzheimer’s disease with vector space models
نویسندگان
چکیده
Numerous studies have shown that language impairments, particularly semantic deficits, are evident in the narrative speech of people with Alzheimer’s disease from the earliest stages of the disease. Here, we present a novel technique for capturing those changes, by comparing distributed word representations constructed from healthy controls and Alzheimer’s patients. We investigate examples of words with different representations in the two spaces, and link the semantic and contextual differences to findings from the Alzheimer’s
منابع مشابه
Detection of Alzheimer’s Disease in Elder People Using Gait Analysis and Kinect Camera
Introduction: Gait analysis through using modern technology for detection of Alzheimer's disease has found special attention by researchers over the last decade. In this study, skeletal data recorded with a Kinect camera, were used to analyze gait for the purpose of detecting Alzheimer's disease in elders. Method: In this applied-developmental experimental study, using a Kinect camera, data wer...
متن کاملDetection of Alzheimer’s Disease in Elder People Using Gait Analysis and Kinect Camera
Introduction: Gait analysis through using modern technology for detection of Alzheimer's disease has found special attention by researchers over the last decade. In this study, skeletal data recorded with a Kinect camera, were used to analyze gait for the purpose of detecting Alzheimer's disease in elders. Method: In this applied-developmental experimental study, using a Kinect camera, data wer...
متن کاملVector-space topic models for detecting Alzheimer's disease
Semantic deficit is a symptom of language impairment in Alzheimer’s disease (AD). We present a generalizable method for automatic generation of information content units (ICUs) for a picture used in a standard clinical task, achieving high recall, 96.8%, of human-supplied ICUs. We use the automatically generated topic model to extract semantic features, and train a random forest classifier to a...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملDetecting hippocampal shape changes in Alzheimer's disease using statistical shape models
The hippocampus is affected at an early stage in the development of Alzheimer’s disease (AD). Using brain Magnetic Resonance (MR) images, we can investigate the effect of AD on the morphology of the hippocampus. Statistical shape models (SSM) are usually used to describe and model the hippocampal shape variations among the population. We use the shape variation from SSM as features to classify ...
متن کامل