Products of straight spaces

نویسندگان

  • Alessandro Berarducci
  • Dikran Dikranjan
  • Jan Pelant
چکیده

A metric space X is straight if for each finite cover of X by closed sets, and for each real valued function f on X , if f is uniformly continuous on each set of the cover, then f is uniformly continuous on the whole of X . A locally connected space is straight iff it is uniformly locally connected (ULC). It is easily seen that ULC spaces are stable under finite products. On the other hand the product of two straight spaces is not necessarily straight. We prove that the product X × Y of two metric spaces is straight if and only if both X and Y are straight and one of the following conditions holds: (a) both X and Y are precompact; (b) both X and Y are locally connected; (c) one of the spaces is both precompact and locally connected. In particular, when X satisfies (c), the product X × Z is straight for every straight space Z. Finally, we characterize when infinite products of metric spaces are ULC and we completely solve the problem of straightness of infinite products of ULC spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Affinization of Segre products of partial linear spaces

Hyperplanes and hyperplane complements in the Segre product of partial linear spaces are investigated. The parallelism of such a complement is characterized in terms of the point-line incidence. Assumptions, under which the automorphisms of the complement are the restrictions of the automorphisms of the ambient space, are given. An affine covering for the Segre product of Veblenian gamma spaces...

متن کامل

Extended graphs based on KM-fuzzy metric spaces

This paper,  applies the concept  of KM-fuzzy metric spaces and  introduces a novel concept of KM-fuzzy metric  graphs based on KM-fuzzy metric spaces.  This study, investigates the finite KM-fuzzy metric spaces with respect to metrics and KM-fuzzy metrics and constructs KM-fuzzy metric spaces on any given non-empty sets. It tries to  extend   the concept of KM-fuzzy metric spaces to  a larger ...

متن کامل

ON (L;M)-FUZZY CLOSURE SPACES

The aim of this paper is to introduce $(L,M)$-fuzzy closurestructure where $L$ and $M$ are strictly two-sided, commutativequantales. Firstly, we define $(L,M)$-fuzzy closure spaces and getsome relations between $(L,M)$-double fuzzy topological spaces and$(L,M)$-fuzzy closure spaces. Then, we introduce initial$(L,M)$-fuzzy closure structures and we prove that the category$(L,M)$-{bf FC} of $(L,M...

متن کامل

Uniform connectedness and uniform local connectedness for lattice-valued uniform convergence spaces

We apply Preuss' concept of $mbbe$-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly $mbbe$-connected if the only uniformly continuous mappings from the space to a space in the class $mbbe$ are the constant mappings. We develop the basic theory for $mbbe$-connected sets, including the product theorem. Furtherm...

متن کامل

Guided Expansive Spaces Trees

Motion planning for systems with constraints on controls or the need for relatively straight paths for real-time actions presents challenges for modern planners. This paper presents an approach which addresses these types of systems by building on existing motion planning approaches. Guided Expansive Spaces Trees are introduced to search for a low cost and relatively straight path in a space wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008