Superior broadband antireflection from buried Mie resonator arrays for high-efficiency photovoltaics
نویسندگان
چکیده
Establishing reliable and efficient antireflection structures is of crucial importance for realizing high-performance optoelectronic devices such as solar cells. In this study, we provide a design guideline for buried Mie resonator arrays, which is composed of silicon nanostructures atop a silicon substrate and buried by a dielectric film, to attain a superior antireflection effect over a broadband spectral range by gaining entirely new discoveries of their antireflection behaviors. We find that the buried Mie resonator arrays mainly play a role as a transparent antireflection structure and their antireflection effect is insensitive to the nanostructure height when higher than 150 nm, which are of prominent significance for photovoltaic applications in the reduction of photoexcited carrier recombination. We further optimally combine the buried Mie resonator arrays with micron-scale textures to maximize the utilization of photons, and thus have successfully achieved an independently certified efficiency of 18.47% for the nanostructured silicon solar cells on a large-size wafer (156 mm × 156 mm).
منابع مشابه
Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays
Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that t...
متن کاملOmnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces
Light trapping in planar ultrathin-film solar cells is limited due to a small number of optical modes available in the thin-film slab. A nanostructured thin-film design could surpass this limit by providing broadband increase in the local density of states in a subwavelength volume and maintaining efficient coupling of light. Here we report a broadband metasurface design, enabling efficient and...
متن کاملSimulation analysis of GaN microdomes with broadband omnidirectional antireflection for concentrator photovoltaics
متن کامل
Mie resonance-mediated antireflection effects of Si nanocone arrays fabricated on 8-in. wafers using a nanoimprint technique
UNLABELLED We fabricated 8-in. Si nanocone (NC) arrays using a nanoimprint technique and investigated their optical characteristics. The NC arrays exhibited remarkable antireflection effects; the optical reflectance was less than 10% in the visible wavelength range. The photoluminescence intensity of the NC arrays was an order of magnitude larger than that of a planar wafer. Optical simulations...
متن کاملLight management for photovoltaics using high-index nanostructures.
High-performance photovoltaic cells use semiconductors to convert sunlight into clean electrical power, and transparent dielectrics or conductive oxides as antireflection coatings. A common feature of these materials is their high refractive index. Whereas high-index materials in a planar form tend to produce a strong, undesired reflection of sunlight, high-index nanostructures afford new ways ...
متن کامل