Formation of hydrated triply charged metal ions from aqueous solutions using nanodrop mass spectrometry.
نویسندگان
چکیده
Forming hydrated clusters containing triply charged metal ions is challenging due to the competing process of dissociation by forming the metal hydroxide with one less net charge and a protonated water molecule. It is demonstrated for the first time that it is possible to form such clusters using a method we call "nanodrop mass spectrometry". Clusters of the form [M(H(2)O)(n)](3+), where M = Ce, Eu, and La, are generated using electrospray ionization and are mass analyzed in a Fourier-transform ion cyclotron resonance mass spectrometer with an ion cell cooled to -140 °C. Clusters containing trivalent La with n ranging from 16 to over 160 can be readily produced. These clusters are stable at this temperature for many seconds, enabling all standard methods to probe structure and reactivity of these unusual species. Photodissociation experiments on extensively hydrated clusters of trivalent lanthanum using resonant infrared radiation indicate that a minimum of 17 water molecules is necessary to stabilize these trivalent clusters under the low-energy ion excitation conditions and long time frame of these experiments. These results indicate that a minimum droplet size of approximately a nanometer is necessary for these trivalent species to survive intact. This suggests that elemental speciation of trivalent metal ions from aqueous solutions should be possible using nanodrop mass spectrometry.
منابع مشابه
Tandem ion mobility-mass spectrometry (IMS-MS) study of ion evaporation from ionic liquid-acetonitrile nanodrops.
Ion evaporation is an essential step in the formation of charged ions from electrosprays, yet many aspects of the process are poorly understood. The ion evaporation kinetics of the 1-ethyl-3-methyl-imidazolium+ (EMI+) based ionic liquids (ILs) EMI-BF4, EMI-bis(perfluoroethylsulfonyl)imide, EMI-bis(trifluoromethylsulfonyl)imide and EMI-tris(trifluoromethylsulfonyl)methide (EMI-Methide) are studi...
متن کاملDirect observation of ion evaporation from a triply charged nanodroplet.
Triply charged, highly solvated metal ions of the form [Ln(H(2)O)(n)](3+) can be generated using a commercial mass spectrometer, and CID studies on these highly charged metal-solvent clusters allow for the direct observation of a process best described as ion evaporation.
متن کاملNew supercharging reagents produce highly charged protein ions in native mass spectrometry.
The effectiveness of two new supercharging reagents for producing highly charged ions by electrospray ionization (ESI) from aqueous solutions in which proteins have native structures and reactivities were investigated. In aqueous solution, 2-thiophenone and 4-hydroxymethyl-1,3-dioxolan-2-one (HD) at a concentration of 2% by volume can increase the average charge of cytochrome c and myoglobin by...
متن کاملDetection of inorganic ions from water by electrospray ionization-ion mobility spectrometry.
The results from this study illustrate the first time electrospray ionization-ion mobility spectrometry (ESI-IMS) has been used to separate inorganic cations in aqueous solutions. Using ESI-IMS nine inorganic cation solutions were analyzed. Counter ions affected both the sensitivity and the identity of the response ions. Aluminum sulfate, lanthanum chloride, strontium chloride, uranyl acetate, ...
متن کاملSelective Sorption of Heavy Metal Ions from Aqueous Solutions Using m-Cresol Based Chelating Resin and Its Analytical Applications
Salicylic acid-Formaldehyde-m-Cresol (SFM) terpolymer had been synthesized in DMF media by conventional method. The resulting resin had been characterized by FTIR spectra, elemental and thermogravimetric analyses. The morphology of SFM resin had been studied by SEM and Optical photograph. Various parameters like rate of equilibration, effect of pH on ion exchange capacity and effect of conc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of mass spectrometry
دوره 253 3 شماره
صفحات -
تاریخ انتشار 2006