Practical inexact proximal quasi-Newton method with global complexity analysis
نویسندگان
چکیده
Recently several methods were proposed for sparse optimization which make careful use of second-order information [11, 34, 20, 4] to improve local convergence rates. These methods construct a composite quadratic approximation using Hessian information, optimize this approximation using a first-order method, such as coordinate descent and employ a line search to ensure sufficient descent. Here we propose a general framework, which includes slightly modified versions of existing algorithms and also a new algorithm, which uses limited memory BFGS Hessian approximations, and provide a novel global convergence rate analysis, which covers methods that solve subproblems via coordinate descent.
منابع مشابه
Proximal quasi-Newton methods for regularized convex optimization with linear and accelerated sublinear convergence rates
In [19], a general, inexact, efficient proximal quasi-Newton algorithm for composite optimization problems has been proposed and a sublinear global convergence rate has been established. In this paper, we analyze the convergence properties of this method, both in the exact and inexact setting, in the case when the objective function is strongly convex. We also investigate a practical variant of...
متن کاملProximal Quasi-Newton Methods for Convex Optimization
In [19], a general, inexact, e cient proximal quasi-Newton algorithm for composite optimization problems has been proposed and a sublinear global convergence rate has been established. In this paper, we analyze the convergence properties of this method, both in the exact and inexact setting, in the case when the objective function is strongly convex. We also investigate a practical variant of t...
متن کاملAn inexact alternating direction method with SQP regularization for the structured variational inequalities
In this paper, we propose an inexact alternating direction method with square quadratic proximal (SQP) regularization for the structured variational inequalities. The predictor is obtained via solving SQP system approximately under significantly relaxed accuracy criterion and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملComplexity of Inexact Proximal Newton methods
Recently several, so-called, proximal Newton methods were proposed for sparse optimization [6, 11, 8, 3]. These methods construct a composite quadratic approximation using Hessian information, optimize this approximation using a first-order method, such as coordinate descent and employ a line search to ensure sufficient descent. Here we propose a general framework, which includes slightly modif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 160 شماره
صفحات -
تاریخ انتشار 2016