8 Fulton - MacPherson compactification , cyclohedra , and the polygonal pegs problem
نویسنده
چکیده
The cyclohedron Wn, known also as the Bott-Taubes polytope, arises both as the polyhedral realization of the poset of all cyclic bracketings of the word x1x2 . . . xn and as an essential part of the Fulton-MacPherson compactification of the configuration space of n distinct, labelled points on the circle S1. The “polygonal pegs problem” asks whether every simple, closed curve in the plane or in the higher dimensional space admits an inscribed polygon of a given shape. We develop a new approach to the polygonal pegs problem based on the FultonMacPherson (Axelrod-Singer, Kontsevich) compactification of the configuration space of (cyclically) ordered n-element subsets in S1. Among the new results obtained by this method are proofs of Grünbaum’s conjecture about inscribed affine regular hexagons in smooth Jordan curves and the conjecture of Hadwiger about inscribed parallelograms in smooth, simple, closed curves in the 3-space.
منابع مشابه
1 1 N ov 2 00 8 Fulton - MacPherson compactification , cyclohedra , and the polygonal pegs problem
The cyclohedron Wn, known also as the Bott-Taubes polytope, arises both as the polyhedral realization of the poset of all cyclic bracketings of the word x1x2 . . . xn and as an essential part of the Fulton-MacPherson compactification of the configuration space of n distinct, labelled points on the circle S1. The “polygonal pegs problem” asks whether every simple, closed curve in the plane or in...
متن کاملA Generalization of the Moduli Space of Pointed Stable Rational Curves
We introduce a smooth projective variety Td,n which may be viewed either as a compactification of the space of n distinct points on affine d-space modulo translation and homothety or as a compactification of the space of embeddings of a hyperplane in P together with n distinct points not lying on the hyperplane, up to projective equivalence. The points in the boundary of this compactification c...
متن کاملWonderful Compactifications of Arrangements of Subvarieties
We define the wonderful compactification of an arrangement of subvarieties. Given a complex nonsingular algebraic variety Y and certain collection G of subvarieties of Y , the wonderful compactification YG can be constructed by a sequence of blow-ups of Y along the subvarieties of the arrangement. This generalizes the Fulton-MacPherson configuration spaces and the wonderful models given by De C...
متن کاملManifold-theoretic Compactifications of Configuration Spaces
We present new definitions for and give a comprehensive treatment of the canonical compactification of configuration spaces due to Fulton-MacPherson and Axelrod-Singer in the setting of smooth manifolds, as well as a simplicial variant of this compactification. Our constructions are elementary and give simple global coordinates for the compactified configuration space of a general manifold embe...
متن کاملThe Chow Ring of Relative Fulton–macpherson Space
Suppose that X is a nonsingular variety and D is a nonsingular proper subvariety. Configuration spaces of distinct and non-distinct n points in X away from D were constructed by the author and B. Kim in [4] by using the method of wonderful compactification. In this paper, we give an explicit presentation of Chow motives and Chow rings of these configuration spaces.
متن کامل