Dynamics of ballistic annihilation.

نویسندگان

  • Jarosław Piasecki
  • Emmanuel Trizac
  • Michel Droz
چکیده

The problem of ballistically controlled annihilation is revisited for general initial velocity distributions and an arbitrary dimension. An analytical derivation of the hierarchy equations obeyed by the reduced distributions is given, and a scaling analysis of the corresponding spatially homogeneous system is performed. This approach points to the relevance of the nonlinear Boltzmann equation for dimensions larger than 1 and provides expressions for the exponents describing the decay of the particle density n(t) proportional, variant t(-xi) and the root-mean-square velocity v proportional, variant t(-gamma) in terms of a parameter related to the dissipation of kinetic energy. The Boltzmann equation is then solved perturbatively within a systematic expansion in Sonine polynomials. Analytical expressions for the exponents xi and gamma are obtained in arbitrary dimension as a function of the parameter mu characterizing the small velocity behavior of the initial velocity distribution. Moreover, the leading non-Gaussian corrections to the scaled velocity distribution are computed. These expressions for the scaling exponents are in good agreement with the values reported in the literature for continuous velocity distributions in d=1. For the two-dimensional case, we implement Monte Carlo and molecular dynamics simulations that turn out to be in excellent agreement with the analytical predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some exact results for Boltzmann's annihilation dynamics.

The problem of ballistic annihilation for a spatially homogeneous system is revisited within Boltzmann's kinetic theory in two and three dimensions. Analytical results are derived for the time evolution of the particle density for some isotropic discrete bimodal velocity modulus distributions. According to the allowed values of the velocity modulus, different behaviors are obtained: power law d...

متن کامل

Stochastic ballistic annihilation and coalescence

We study a class of stochastic ballistic annihilation and coalescence models with a binary velocity distribution in one dimension. We obtain an exact solution for the density which reveals a universal phase diagram for the asymptotic density decay. By universal we mean that all models in the class are described by a single phase diagram spanned by two reduced parameters. The phase diagram revea...

متن کامل

6 J an 2 00 9 Brownian motion under annihilation dynamics Maŕıa

The behavior of a heavy tagged intruder immersed in a bath of particles evolving under ballistic annihilation dynamics is investigated. The Fokker-Planck equation for this system is derived and the peculiarities of the corresponding diffusive behavior are worked out. In the long time limit, the intruder velocity distribution function approaches a Gaussian form, but with a different temperature ...

متن کامل

Brownian motion under annihilation dynamics.

The behavior of a heavy tagged intruder immersed in a bath of particles evolving under ballistic annihilation dynamics is investigated. The Fokker-Planck equation for this system is derived and the peculiarities of the corresponding diffusive behavior are worked out. In the long time limit, the intruder velocity distribution function approaches a Gaussian form, but with a different temperature ...

متن کامل

Exact Solution of Two-species Ballistic Annihilation with General Pair-reaction Probability

The reaction process A + B → ∅ is modelled for ballistic reactants on an infinite line with particle velocities vA = c and vB = −c and initially segregated conditions, i.e. all A particles to the left and all B particles to the right of the origin. Previous models of ballistic annihilation have particles that always react on contact, i.e. pair-reaction probability p = 1. The evolution of such s...

متن کامل

Kinetics and scaling in ballistic annihilation.

We study the simplest irreversible ballistically controlled reaction, whereby particles having an initial continuous velocity distribution annihilate upon colliding. In the framework of the Boltzmann equation, expressions for the exponents characterizing the density and typical velocity decay are explicitly worked out in arbitrary dimension. These predictions are in excellent agreement with the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 66 6 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2002