Performance Evaluation of a Side Mounted Shuttle Derived Heavy Lift Launch Vehicle for Lunar Exploration

نویسندگان

  • Robert W. Thompson
  • Alan Wilhite
چکیده

The NASA Exploration Systems Architecture Study (ESAS) produced a transportation architecture for returning humans to the moon affordably and safely. ESAS determined that the best lunar exploration strategy was to separate the launch of crew from the launch of cargo, thereby requiring two launches per lunar mission. An alternate concept for the cargo launch vehicle is a side mounted Shuttle-derived heavy lift launch. This configuration is similar to previously studied concepts, except engines and structure have been added to the External Tank (ET), making it a complete first stage. The upper stage is mounted on the side of the first stage, much like the Shuttle orbiter is mounted on the side of the ET. Like the Shuttle, solid rocket boosters (SRBs) are also used. This configuration has several performance and operational benefits over an in-line heavy lift launch vehicle. According to the ESAS report, side mount configurations were not considered to be among the most promising configurations, and were not carried forward for further consideration within architectural options. The performance of this launch vehicle is independently analyzed, using multidisciplinary analysis techniques. Methods and tools used include launch trajectory optimization with POST, vehicle aerodynamic analysis using APAS, and weights and sizing using historically based estimating relationships. Principal trade studies performed include first and second stage propulsion (number of engines and engine type), solid rocket booster size (four versus five segment), and staging ∆V. The vehicle design that best meets the requirements for space exploration (lunar and future missions) is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of the Space Shuttle Primary Avionics Software and Avionics for Shuttle Derived Launch Vehicles

As a result of recommendation from the Augustine Panel, the direction for Human Space Flight has been altered from the original plan referred to as Constellation. NASA’s Human Exploration Framework Team (HEFT) proposes the use of a Shuttle Derived Heavy Lift Launch Vehicle (SDLV) and an Orion derived spacecraft (salvaged from Constellation) to support a new flexible direction for space explorat...

متن کامل

Evaluation of Ice and Frost Accumulation on the Space Shuttle External Tank

Ice/frost formation on the Space Shuttle cryogenic propel 1 ant tanks presents a different problem from that of past launch vehicles. Lift off weight addition has been the primary concern on past launch vehicles. The primary ice/frost concern on the Shuttle vehicle is damage to the Orbiter Thermal Protection System due to ice/frost impact. The approach used to arrive at a solution to this uni­ ...

متن کامل

State machine modeling of the Space Launch System Solid Rocket Boosters

The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA’s premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange...

متن کامل

Design and Flight Performance of the Orion Pre-Launch Navigation System

The Orion capsule, the successor of the Space Shuttle as NASA’s flagship human transportation vehicle, is designed to take men back to the Moon and beyond. The first Exploration Mission (EM1) is scheduled for 2018, while its first flight test, EFT-1 (Exploration Flight Test-1), was successfully completed on December 5th, 2014. The main objective of the test was to demonstrate the capability to ...

متن کامل

Adaptive attitude controller of a reentry vehicles based on Back-stepping Dynamic inversion method

This paper presents an attitude control algorithm for a Reusable Launch Vehicle (RLV) with a low lift/drag ratio (L/D < 0.5), in the presence of external disturbances, model uncertainties, control output constraints and the thruster model. The main novelty of proposed control strategy is a new combination of the attitude control methods included backstepping, dynamic inversion and adaptive cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006