Robust Outlier Detection Using Commute Time and Eigenspace Embedding
نویسندگان
چکیده
We present a method to find outliers using ‘commute distance’ computed from a random walk on graph. Unlike Euclidean distance, commute distance between two nodes captures both the distance between them and their local neighborhood densities. Indeed commute distance is the Euclidean distance in the space spanned by eigenvectors of the graph Laplacian matrix. We show by analysis and experiments that using this measure, we can capture both global and local outliers effectively with just a distance based method. Moreover, the method can detect outlying clusters which other traditional methods often fail to capture and also shows a high resistance to noise than local outlier detection method. Moreover, to avoid the O(n) direct computation of commute distance, a graph component sampling and an eigenspace approximation combined with pruning technique reduce the time to O(nlogn) while preserving the outlier ranking.
منابع مشابه
Outlier Detection for Support Vector Machine using Minimum Covariance Determinant Estimator
The purpose of this paper is to identify the effective points on the performance of one of the important algorithm of data mining namely support vector machine. The final classification decision has been made based on the small portion of data called support vectors. So, existence of the atypical observations in the aforementioned points, will result in deviation from the correct decision. Thus...
متن کاملIntelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms
Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...
متن کاملIdentification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملRobust Multi-body Motion Tracking Using Commute Time Clustering
The presence of noise renders the classical factorization method almost impractical for real-world multi-body motion tracking problems. The main problem stems from the effect of noise on the shape interaction matrix, which looses its block-diagonal structure and as a result the assignment of elements to objects becomes difficult. The aim in this paper is to overcome this problem using graph-spe...
متن کاملSimultaneous robust estimation of multi-response surfaces in the presence of outliers
A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...
متن کامل