Cruciform extrusion propensity of human translocation-mediating palindromic AT-rich repeats

نویسندگان

  • Hiroshi Kogo
  • Hidehito Inagaki
  • Tamae Ohye
  • Takema Kato
  • Beverly S. Emanuel
  • Hiroki Kurahashi
چکیده

There is an emerging consensus that secondary structures of DNA have the potential for genomic instability. Palindromic AT-rich repeats (PATRRs) are a characteristic sequence identified at each breakpoint of the recurrent constitutional t(11;22) and t(17;22) translocations in humans, named PATRR22 (approximately 600 bp), PATRR11 (approximately 450 bp) and PATRR17 (approximately 190 bp). The secondary structure-forming propensity in vitro and the instability in vivo have been experimentally evaluated for various PATRRs that differ regarding their size and symmetry. At physiological ionic strength, a cruciform structure is most frequently observed for the symmetric PATRR22, less often for the symmetric PATRR11, but not for the other PATRRs. In wild-type E. coli, only these two PATRRs undergo extensive instability, consistent with the relatively high incidence of the t(11;22) in humans. The resultant deletions are putatively mediated by central cleavage by the structure-specific endonuclease SbcCD, indicating the possibility of a cruciform conformation in vivo. Insertion of a short spacer at the centre of the PATRR22 greatly reduces both its cruciform extrusion in vitro and instability in vivo. Taken together, cruciform extrusion propensity depends on the length and central symmetry of the PATRR, and is likely to determine the instability that leads to recurrent translocations in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two different forms of palindrome resolution in the human genome: deletion or translocation.

Regions containing palindromic sequence are known to be susceptible to genomic rearrangement in prokaryotes and eukaryotes. Palindromic AT-rich repeats (PATRR) are hypervariable in the human genome, manifesting size polymorphisms and a propensity to rearrange. Size variations are mainly the result of internal deletions, while two PATRRs on 11q23 and 22q11 (PATRR11 and 22) contribute to generati...

متن کامل

Competitive superhelical transitions involving cruciform extrusion

A DNA molecule under negative superhelical stress becomes susceptible to transitions to alternate structures. The accessible alternate conformations depend on base sequence and compete for occupancy. We have developed a method to calculate equilibrium distributions among the states available to such systems, as well as their average thermodynamic properties. Here we extend this approach to incl...

متن کامل

Effect of base composition at the center of inverted repeated DNA sequences on cruciform transitions in DNA.

We have analyzed the effect of base composition at the center of symmetry of inverted repeated DNA sequences on cruciform transitions in supercoiled DNA. For this we have constructed two series of palindromic DNA sequences: one set with differing center and one set with differing center and arm sequences. The F series consists of two 96-base pair perfect inverted repeats which are identical exc...

متن کامل

Real-time detection of cruciform extrusion by single-molecule DNA nanomanipulation

During cruciform extrusion, a DNA inverted repeat unwinds and forms a four-way junction in which two of the branches consist of hairpin structures obtained by self-pairing of the inverted repeats. Here, we use single-molecule DNA nanomanipulation to monitor in real-time cruciform extrusion and rewinding. This allows us to determine the size of the cruciform to nearly base pair accuracy and its ...

متن کامل

Comparison of physical and genetic properties of palindromic DNA sequences.

Some viable palindromic DNA sequences were found to cause an increase in the recovery of genetic recombinants. Although these palindromes contained no Chi sites, their presence in cis caused apparent recA+-dependent recombination to increase severalfold. This biological property did not correlate with the physical properties of the palindromes' extrusion of cruciform structures in vitro. Thus, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007