Multiple Effects of Dithiothreitol on Nonphotochemical Fluorescence Quenching in Intact Chloroplasts (Influence on Violaxanthin De-epoxidase and Ascorbate Peroxidase Activity).

نویسنده

  • C. Neubauer
چکیده

Reversible nonphotochemical fluorescence quenching depends on thylakoid lumen acidification and violaxanthin de-epoxidation and is correlated with photoprotection of photosynthesis. The O2-dependent electron flow in the coupled Mehler-ascorbate peroxidase reaction (MP-reaction) mediates the electron flow necessary for lumen acidification and violaxanthin de-epoxidation in isolated, intact chloroplasts. Inhibition of violaxanthin de-epoxidation by dithiothreitol (DTT) was correlated with suppression of fluorescence quenching. In addition, DTT was also found to suppress fluorescence quenching due to inhibition of ascorbate peroxidase activity, a main enzyme of the MP-reaction, even in the presence of zeaxanthin. In intact, non-CO2-fixing chloroplasts, violaxanthin and antheraxanthin de-epoxidation and the ascorbate peroxidase activity show different sensitivities to increasing DTT concentrations. Violaxanthin de-epoxidase activity, measured as the sum of zeaxanthin and antheraxanthin formed, was inhibited with an inhibitor concentration for 50% inhibition (I50) of 0.35 mM DTT. In contrast, inhibition of the O2-dependent electron flow and corresponding lumen acidification occurred with higher I50 values of 2.5 and 3 mM DTT, respectively, and was attributed to inhibition of ascorbate peroxidase activity (I50 = 2 mM DTT). Accordingly, the DTT-induced inhibition of the nigericin-sensitive nonphotochemical fluorescence quenching was correlated linearly with the decreasing concentrations of zeaxanthin and antheraxanthin and was almost unaffected by DTT inhibition of the MP-reaction and correlated [delta]pH. The nigericin-insensitive, photoinhibitory kind of nonphotochemical fluorescence quenching up to 1 mM was mainly correlated with inhibition of violaxanthin de-epoxidation. At higher DTT concentrations, it was attributed to inhibition of both violaxanthin de-epoxidation and MP-reaction. The results show that DTT has multiple, but distinguishable, effects on nonphotochemical fluorescence quenching in isolated chloroplasts, necessitating careful interpretation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts.

Induction of zeaxanthin formation and the associated nonphotochemical quenching in iodoacetamide-treated, non-CO(2)-fixing intact chloroplasts of Lactuca sativa L. cv Romaine is reported. The electron transport needed to generate the required DeltapH for zeaxanthin formation and nonphotochemical quenching are ascribed to the Mehler-ascorbate peroxidase reaction. KCN, an inhibitor of ascorbate p...

متن کامل

Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts.

Dithiothreitol, which completely inhibits the de-epoxidation of violaxanthin to zeaxanthin, was used to obtain evidence for a causal relationship between zeaxanthin and the dissipation of excess excitation energy in the photochemical apparatus in Spinicia oleracea L. In both leaves and chloroplasts, inhibition of zeaxanthin formation by dithiothreitol was accompanied by inhibition of a componen...

متن کامل

Chlamydomonas Xanthophyll Cycle Mutants Identified by Video Imaging of Chlorophyll Fluorescence Quenching.

The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotochemical quenching depends primarily on the [delta]pH that is generated by photosynthetic electron ...

متن کامل

Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens.

Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)-dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is...

متن کامل

Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots.

The photosystem II (PSII) protein PsbS and the enzyme violaxanthin deepoxidase (VDE) are known to influence the dynamics of energy-dependent quenching (qE), the component of nonphotochemical quenching (NPQ) that allows plants to respond to fast fluctuations in light intensity. Although the absence of PsbS and VDE has been shown to change the amount of quenching, there have not been any measurem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 103 2  شماره 

صفحات  -

تاریخ انتشار 1993