2-universal Positive Definite Integral Quinary Diagonal Quadratic Forms
نویسندگان
چکیده
As a generalization of the famous four square theorem of Lagrange, Ramanujan found all positive definite integral quaternary diagonal quadratic forms that represent all positive integers. In this paper, we find all positive definite integral quinary diagonal quadratic forms that represent all positive definite integral binary quadratic forms. §
منابع مشابه
2-universal Positive Definite Integral Quinary Quadratic Forms
As a generalization of the famous four square theorem of Lagrange, Ramanujan and Willerding found all positive definite integral quaternary quadratic forms that represent all positive integers. In this paper, we find all positive definite integral quinary quadratic forms that represent all positive definite integral binary quadratic forms. We also discuss recent results on positive definite int...
متن کاملGonii: Universal Quaternary Quadratic Forms
We continue our study of quadratic forms using Geometry of Numbers methods by considering universal quaternary positive definite integral forms of square discriminant. We give a small multiple theorem for such forms and use it to prove universality for all nine universal diagonal forms. The most interesting case is x2 + 2y2 + 5z2 + 10w2, which required computer calculations.
متن کامل2-universal Hermitian Lattices over Imaginary Quadratic Fields
We call a positive definite integral quadratic form universal if it represents all positive integers. Then Lagrange’s Four Square Theorem means that the sum of four squares is universal. In 1930, Mordell [M] generalized this notion to a 2-universal quadratic form: a positive definite integral quadratic form that represents all binary positive definite integral quadratic forms, and showed that t...
متن کاملSimple Proofs for Universal Binary Hermitian Lattices
It has been a central problem in the theory of quadratic forms to find integers represented by quadratic forms. The celebrated Four Square Theorem by Lagrange [10] was an outstanding result in this study. Ramanujan generalized this theorem and found 54 positive definite quaternary quadratic forms which represent all positive integers [13]. We call a positive definite quadratic form universal, i...
متن کاملFINITENESS THEOREMS FOR POSITIVE DEFINITE n-REGULAR QUADRATIC FORMS
An integral quadratic form f of m variables is said to be n-regular if f globally represents all quadratic forms of n variables that are represented by the genus of f . For any n ≥ 2, it is shown that up to equivalence, there are only finitely many primitive positive definite integral quadratic forms of n+3 variables that are n-regular. We also investigate similar finiteness results for almost ...
متن کامل