Seepage into drifts with mechanical degradation.

نویسندگان

  • Guomin Li
  • Chin-Fu Tsang
چکیده

Seepage into drifts in unsaturated tuff is an important issue for the long-term performance of the proposed nuclear waste repository at Yucca Mountain, Nevada. Drifts in which waste packages will be emplaced are subject to degradation in the form of rockfall from the drift ceiling, induced by stress-relief, seismic, or thermal effects. The objective of this study is to calculate seepage rates, for various drift-degradation scenarios and for different values of percolation flux, in the Topopah Spring middle nonlithophysal (Tptpmn) and the Topopah Spring lower lithophysal (Tptpll) units at Yucca Mountain. Seepage calculations are conducted by (1) defining a heterogeneous drift-scale permeability model with field data, (2) selecting calibrated parameters associated with the Tptpmn and Tptpll units, and (3) simulating seepage, based on detailed degraded-drift profiles obtained from a separate rock mechanics engineering analysis. The simulation results indicate (1) that the seepage threshold (i.e., the percolation flux at which seepage first occurs) is not significantly changed by drift degradation and (2) the degradation-induced increase in seepage above the threshold is influenced probably more by the shape of the cavity created by rockfall than by rockfall volume.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical experiments on the probability of seepage into underground openings in heterogeneous fractured rock

An important issue for the performance of underground nuclear waste repositories is the rate of seepage into the waste emplacement drifts. A prediction of this rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, because it is located in thick, unsaturated, fractured tuff formations. Underground openings in unsaturated media might act as capillary barrie...

متن کامل

Effect of heterogeneity in fracture permeability on the potential for liquid seepage into a heated emplacement drift of the potential repository.

A numerical model was used to investigate the effect of spatial variability in fracture permeability on liquid seepage and moisture distribution in the vicinity of a waste emplacement drift in the unsaturated zone (UZ) of Yucca Mountain. The model is based on a two-dimensional, cross-sectional, dual-permeability model of the unsaturated zone at Yucca Mountain and uses a stochastic approach to i...

متن کامل

Modeling Seepage into Heated Waste Emplacement Tunnels in Unsaturated Fractured Rock

Predicting the amount of water that may seep into waste emplacement tunnels (drifts) is important for assessing the performance of the proposed geologic repository for highlevel radioactive waste at Yucca Mountain, Nevada. The repository will be located in thick, partially saturated fractured tuff that—for the first several hundred years after emplacement— will be heated to above-boiling temper...

متن کامل

Stochastic Analysis of Seepage through Natural Alluvial Deposits Considering Mechanical Anisotropy

The soil is a heterogeneous and anisotropic medium. Hydraulic conductivity, an intrinsic property of natural alluvial deposits varies both deterministically and randomly in space and has different values in various directions. In the present study, the permeability of natural deposits and its influence on the seepage flow through a natural alluvial deposit is studied. The 2D Finite Difference c...

متن کامل

Evolution of the unsaturated zone testing at Yucca Mountain.

The evaluation of the Yucca Mountain site has evolved from intensive surface-based investigations in the early 1980s to current focus on testing in underground drifts. Different periods of site characterization activities and prominent issues concerning the unsaturated zone (UZ) are summarized. Data collection activities have evolved from mapping of faults and fractures to estimation of percola...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of contaminant hydrology

دوره 62-63  شماره 

صفحات  -

تاریخ انتشار 2003