Inferring Binary Relation Schemas for Open Information Extraction

نویسندگان

  • Kangqi Luo
  • Xusheng Luo
  • Kenny Q. Zhu
چکیده

This paper presents a framework to model the semantic representation of binary relations produced by open information extraction systems. For each binary relation, we infer a set of preferred types on the two arguments simultaneously, and generate a ranked list of type pairs which we call schemas. All inferred types are drawn from the Freebase type taxonomy, which are human readable. Our system collects 171,168 binary relations from ReVerb, and is able to produce top-ranking relation schemas with a mean reciprocal rank of 0.337.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Improving Computational Cost of Open Information Extraction Systems Using Log-Linear Model

Information extraction (IE) is a process of automatically providing a structured representation from an unstructured or semi-structured text. It is a long-standing challenge in natural language processing (NLP) which has been intensified by the increased volume of information and heterogeneity, and non-structured form of it. One of the core information extraction tasks is relation extraction wh...

متن کامل

Event Schema Induction using Tensor Factorization with Back-off

The goal of Event Schema Induction (ESI) is to identify schemas of events1 from a corpus of documents. For example, given documents from the sports domain, we would like to infer that win(WinningPlayer, Trophy, OpponentPlayer, Location) is an important event schema for this domain. Automatic discovery of such event schemas is an important first step towards building domain-specific Knowledge Gr...

متن کامل

A Robot That Uses Existing Vocabulary to Infer Non-Visual Word Meanings from Observation

The authors present TWIG, a visually grounded wordlearning system that uses its existing knowledge of vocabulary, grammar, and action schemas to help it learn the meanings of new words from its environment. Most systems built to learn word meanings from sensory data focus on the “base case” of learning words when the robot knows nothing, and do not incorporate grammatical knowledge to aid the p...

متن کامل

Effectiveness and Efficiency of Open Relation Extraction

A large number of Open Relation Extraction approaches have been proposed recently, covering a wide range of NLP machinery, from “shallow” (e.g., part-of-speech tagging) to “deep” (e.g., semantic role labeling–SRL). A natural question then is what is the tradeoff between NLP depth (and associated computational cost) versus effectiveness. This paper presents a fair and objective experimental comp...

متن کامل

A Hierarchical Model for Universal Schema Relation Extraction

Relation extraction by universal schema avoids mapping to a brittle, incomplete traditional schema by instead making predictions in the union of all input schemas, including textual patterns. Modeling these predictions by matrix competition with matrix factorization has yielded state-of-the-art accuracies. One difficulty with prior work in matrix factorization, however, is that there is no nega...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015