Quadratic regularizations in an interior-point method for primal block-angular problems

نویسندگان

  • Jordi Castro
  • Jordi Cuesta
چکیده

One of the most efficient interior-point methods for some classes of primal block-angular problems solves the normal equations by a combination of Cholesky factorizations and preconditioned conjugate gradient for, respectively, the block and linking constraints. Its efficiency depends on the spectral radius—in [0,1)— of a certain matrix in the definition of the preconditioner. Spectral radius close to 1 degrade the performance of the approach. The purpose of this work is twofold. First, to show that a separable quadratic regularization term in the objective reduces the spectral radius, significantly improving the overall performance in some classes of instances. Second, to consider a regularization term which decreases with the barrier function, thus with no need for an extra parameter. Computational experience with some primal block-angular problems confirms the efficiency of the regularized approach. In particular, for some difficult problems, the solution time is reduced by a factor of two to ten by the regularization term, outperforming state-of-the-art commercial solvers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving L1-CTA in 3D tables by an interior-point method for primal block-angular problems

The purpose of the field of statistical disclosure control is to avoid that no confidential information can be derived from statistical data released by, mainly, national statistical agencies. Controlled tabular adjustment (CTA) is an emerging technique for the protection of statistical tabular data. Given a table to be protected, CTA looks for the closest safe table. In this work we focus on C...

متن کامل

Improving an interior-point algorithm for multicommodity flows by quadratic regularizations

One of the best approaches for some classes of multicommodity flow problems is a specialized interior-point method that solves the normal equations by a combination of Cholesky factorizations and preconditioned conjugate gradient. Its efficiency depends on the spectral radius—in [0,1)—of a certain matrix in the definition of the preconditioner. In a recent work the authors improved this algorit...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

An interior-point approach for primal block-angular problems

Multicommodity flows belong to the class of primal block-angular problems. An efficient interior-point method has already been developed for linear and quadratic network optimization problems. It solved normal equations, using sparse Cholesky factorizations for diagonal blocks, and a preconditioned conjugate gradient for linking constraints. In this work we extend this procedure, showing that t...

متن کامل

Existence, uniqueness, and convergence of the regularized primal-dual central path

In a recent work [3] the authors improved one of the most efficient interior-point approaches for some classes of block-angular problems. This was achieved by adding a quadratic regularization to the logarithmic barrier. This regularized barrier was shown to be self-concordant, thus fitting the general structural optimization interior-point framework. In practice, however, most codes implement ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 130  شماره 

صفحات  -

تاریخ انتشار 2011