Szemerédi's Regularity Lemma and Its Applications in Graph Theory

ثبت نشده
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Szemerédi's regularity lemma revisited

Szemerédi’s regularity lemma is a basic tool in graph theory, and also plays an important role in additive combinatorics, most notably in proving Szemerédi’s theorem on arithmetic progressions [19], [18]. In this note we revisit this lemma from the perspective of probability theory and information theory instead of graph theory, and observe a slightly stronger variant of this lemma, related to ...

متن کامل

Szemerédi's Regularity Lemma and Its Applications to Pairwise Clustering and Segmentation

Szemerédi’s regularity lemma is a deep result from extremal graph theory which states that every graph can be well-approximated by the union of a constant number of random-like bipartite graphs, called regular pairs. Although the original proof was non-constructive, efficient (i.e., polynomial-time) algorithms have been developed to determine regular partitions for arbitrary graphs. This paper ...

متن کامل

Revealing structure in large graphs: Szemerédi's regularity lemma and its use in pattern recognition

Introduced in the mid-1970’s as an intermediate step in proving a long-standing conjecture on arithmetic progressions, Szemerédi’s regularity lemma has emerged over time as a fundamental tool in different branches of graph theory, combinatorics and theoretical computer science. Roughly, it states that every graph can be approximated by the union of a small number of random-like bipartite graphs...

متن کامل

Szemerédi's Regularity Lemma for Matrices and Sparse Graphs

Szemerédi’s Regularity Lemma is an important tool for analyzing the structure of dense graphs. There are versions of the Regularity Lemma for sparse graphs, but these only apply when the graph satisfies some local density condition. In this paper, we prove a sparse Regularity Lemma that holds for all graphs. More generally, we give a Regularity Lemma that holds for arbitrary real matrices.

متن کامل

A proof of the stability of extremal graphs, Simonovits' stability from Szemerédi's regularity

The following sharpening of Turán’s theorem is proved. Let Tn,p denote the complete p– partite graph of order n having the maximum number of edges. If G is an n-vertex Kp+1-free graph with e(Tn,p) − t edges then there exists an (at most) p-chromatic subgraph H0 such that e(H0) ≥ e(G)− t. Using this result we present a concise, contemporary proof (i.e., one using Szemerédi’s regularity lemma) fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996