Precipitation in Al-Zr-Sc alloys: a comparison between kinetic Monte Carlo, cluster dynamics and classical nucleation theory
نویسندگان
چکیده
Zr and Sc precipitate in aluminum alloys to form the Al3ZrxSc1−x compound which, for low supersaturations of the solid solution, exhibits the L12 structure. The aim of the present study is to model at an atomic scale the kinetics of precipitation and to build mesoscopic models so as to extend the range of supersaturations and annealing times that can be simulated up to values of practical interest. In this purpose, we use some ab initio calculations and experimental data to fit an Ising type model describing thermodynamics of the Al-Zr-Sc system. Kinetics of precipitation are studied with a kinetic Monte Carlo algorithm based on an atom-vacancy exchange mechanism. Cluster dynamics is then used to model at a mesoscopic scale all the different stages of homogeneous precipitation in the two binary Al-Zr and Al-Sc alloys. This technique correctly manages to reproduce both the kinetics of precipitation simulated with kinetic Monte Carlo as well as experimental observations. Focusing on the nucleation stage, it is shown that classical theory well applies as long as the short range order tendency of the system is considered. This allows us to propose an extension of classical nucleation theory for the ternary Al-Zr-Sc alloy.
منابع مشابه
Precipitation kinetics of Al3Zr and Al3Sc in aluminum alloys modeled with cluster dynamics
Precipitation kinetics of Al3Zr and Al3Sc in aluminum supersaturated solid solutions is studied using cluster dynamics, a mesoscopic modeling technique which describes the various stages of homogeneous precipitation by a single set of rate equations. The only parameters needed are the interface free energy and the diffusion coefficient which are deduced from an atomic model previously developed...
متن کاملNucleation and Precipitation Strengthening in Dilute Al-Ti and Al-Zr Alloys
Two conventionally solidified Al-0.2Ti alloys (with 0.18 and 0.22 at. pct Ti) exhibit no hardening after aging up to 3200 hours at 375 C or 425 C. This is due to the absence of Al3Ti precipitation, as confirmed by electron microscopy and electrical conductivity measurements. By contrast, an Al-0.2Zr alloy (with 0.19 at. pct Zr) displays strong age hardening at both temperatures due to precipita...
متن کاملRole of silicon in accelerating the nucleation of Al3(Sc,Zr) precipitates in dilute Al–Sc–Zr alloys
The effects of adding 0.02 or 0.06 at.% Si to Al–0.06Sc–0.06Zr (at.%) are studied to determine the impact of Si on accelerating Al3(Sc,Zr) precipitation kinetics in dilute Al–Sc-based alloys. Precipitation in the 0.06 at.% Si alloy, measured by microhardness and atom-probe tomography (APT), is accelerated for aging times <4 h at 275 and 300 C, compared with the 0.02 at.% Si alloy. Experimental ...
متن کاملFRACTIONAL RECRYSTALLIZATION KINETICS IN DIRECTLY COLD ROLLED Al-Mg, Al-Mg-Sc AND Al-Mg-Sc-Zr ALLOY
The evaluation of texture as a function of recrystallization has been characterized for directly cold rolled Al-6Mg, Al-6Mg-0.4Sc and Al-6Mg-0.4Sc-0.2Zr alloys. Samples were annealed isothermally at 400 °C for 1 to 240 minutes to allow recrystallization. Recrystallization kinetics of the alloys is analyzed from the micro-hardness variation. Isothermally annealed samples of aluminum alloys were ...
متن کاملNucleation of Al3Zr and Al3Sc in aluminum alloys: from kinetic Monte Carlo simulations to classical theory
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کامل