Identifying the semantic orientation of terms using S-HAL for sentiment analysis
نویسندگان
چکیده
0950-7051/$ see front matter 2012 Elsevier B.V. A http://dx.doi.org/10.1016/j.knosys.2012.04.011 ⇑ Corresponding author at: MOE Key Laboratory Network Security, Xi’an Jiaotong University, Xi’an 71 82667964. E-mail addresses: [email protected] (T. Xu (Q. Peng). Sentiment analysis continues to be a most important research problem due to its abundant applications. Identifying the semantic orientation of subjective terms (words or phrases) is a fundamental task for sentiment analysis. In this paper, we propose a new method for identifying the semantic orientation of subjective terms to perform sentiment analysis. The method takes a classification approach that is based on a novel semantic orientation representation model called S-HAL (Sentiment Hyperspace Analogue to Language). S-HAL basically produces a set of weighted features based on surrounding words, and characterizes the semantic orientation information of words via a specific feature space. Because the method incorporates the idea underlying HAL and the hypothesis verified by the method of semantic orientation inference from pointwise mutual information (SO-PMI), it can quickly and accurately identify the semantic orientation of terms without the use of an Internet search engine. The results of an empirical evaluation show that our method outperforms other known methods. 2012 Elsevier B.V. All rights reserved.
منابع مشابه
A Supervised Method for Constructing Sentiment Lexicon in Persian Language
Due to the increasing growth of digital content on the internet and social media, sentiment analysis problem is one of the emerging fields. This problem deals with information extraction and knowledge discovery from textual data using natural language processing has attracted the attention of many researchers. Construction of sentiment lexicon as a valuable language resource is a one of the imp...
متن کاملPredicting the Semantic Orientation of Terms in E-HowNet
The semantic orientation of terms is fundamental for sentiment analysis in sentence and document levels. Although some Chinese sentiment dictionaries are available, how to predict the orientation of terms automatically is still important. In this paper, we predict the semantic orientation of terms of E-HowNet. We extract many useful features from different sources to represent a Chinese term in...
متن کاملMHSubLex: Using Metaheuristic Methods for Subjectivity Classification of Microblogs
In Web 2.0, people are free to share their experiences, views, and opinions. One of the problems that arises in web 2.0 is the sentiment analysis of texts produced by users in outlets such as Twitter. One of main the tasks of sentiment analysis is subjectivity classification. Our aim is to classify the subjectivity of Tweets. To this end, we create subjectivity lexicons in which the words into ...
متن کاملDisambiguating Dynamic Sentiment Ambiguous Adjectives
Dynamic sentiment ambiguous adjectives (DSAAs) like “large, small, high, low” pose a challenging task on sentiment analysis. This paper proposes a knowledge-based method to automatically determine the semantic orientation of DSAAs within context. The task is reduced to sentiment classification of target nouns, which we refer to sentiment expectation instead of semantic orientation widely used i...
متن کاملAn Investigation of Recursive Auto-associative Memory in Sentiment Detection
The rise of blogs, forums, social networks and review websites in recent years has provided very accessible and convenient platforms for people to express thoughts, views or attitudes about topics of interest. In order to collect and analyse opinionated content on the Internet, various sentiment detection techniques have been developed based on an integration of part-of-speech tagging, negation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Knowl.-Based Syst.
دوره 35 شماره
صفحات -
تاریخ انتشار 2012