The ergodic shadowing property for robust and generic volume-preserving diffeomorphisms
نویسنده
چکیده
In this paper, we show the followings: (i) If a volume preserving diffeomorphism f belongs to the C-interior of the set of all volume preserving diffeomorphims having the ergodic shadowing property then it is transitive Anosov. Moreover, (ii) if a C-generic volume-preserving diffeomorphism f has the ergodic shadowing property then it is transitive Anosov. M.S.C. 2010: 37C50, 37D20.
منابع مشابه
LIMIT AVERAGE SHADOWING AND DOMINATED SPLITTING
In this paper the notion of limit average shadowing property is introduced for diffeomorphisms on a compact smooth manifold M and a class of diffeomorphisms is given which has the limit average shadowing property, but does not have the shadowing property. Moreover, we prove that for a closed f-invariant set Lambda of a diffeomorphism f, if Lambda is C1-stably limit average shadowing and t...
متن کاملVolume-Preserving Diffeomorphisms with Periodic Shadowing
We show that if a volume-preserving diffeomorphism belongs to the C1-interior of the set of all volume preserving diffeomorphisms having the periodic shadowing property then it is Anosov. Mathematics Subject Classification: 37C10, 37C50, 37D20
متن کاملA Pasting Lemma I: the case of vector fields
We prove a perturbation (pasting) lemma for conservative (and symplectic) systems. This allows us to prove that C volume preserving vector fields are C-dense in C volume preserving vector fields. Moreover, we obtain that C robustly transitive conservative flows in threedimensional manifolds are Anosov and we conclude that there are no geometrical Lorenz-like sets for conservative flows. Also, b...
متن کاملAn uncountable family of pairwise non-Kakutani equivalent smooth diffeomorphisms
We construct an uncountable family of smooth ergodic zero-entropy diffeomorphisms that are pairwise non-Kakutani equivalent, on any smooth compact connected manifold of dimension greater than two, on which there exists an effective smooth circle action preserving a positive smooth volume. To that end, we first construct a smooth ergodic zero-entropy and non-Loosely Bernoulli diffeomorphism, by ...
متن کامل-generic Diffeomorphisms
On the one hand, we prove that the spaces of C 1 symplectomor-phisms and of C 1 volume-preserving diffeomorphisms both contain residual subsets of diffeomorphisms whose centralizers are trivial. On the other hand, we show that the space of C 1 diffeomorphisms of the circle and a non-empty open set of C 1 diffeomorphisms of the two-sphere contain dense subsets of diffeomorphisms whose centralize...
متن کامل