Finiteness Conditions for Graph Algebras over Tropical Semirings
نویسندگان
چکیده
Connection matrices for graph parameters with values in a field have been introduced by M. Freedman, L. Lovász and A. Schrijver (2007). Graph parameters with connection matrices of finite rank can be computed in polynomial time on graph classes of bounded tree-width. We introduce join matrices, a generalization of connection matrices, and allow graph parameters to take values in the tropical rings (max-plus algebras) over the real numbers. We show that rank-finiteness of join matrices implies that these graph parameters can be computed in polynomial time on graph classes of bounded clique-width. In the case of graph parameters with values in arbitrary commutative semirings, this remains true for graph classes of bounded linear clique-width. B. Godlin, T. Kotek and J.A. Makowsky (2008) showed that definability of a graph parameter in Monadic Second Order Logic implies rank finiteness. We also show that there are uncountably many integer valued graph parameters with connection matrices or join matrices of fixed finite rank. This shows that rank finiteness is a much weaker assumption than any definability assumption. Résumé. Les matrices de connection pour des fonctions sur les graphes á valeurs dans un corps ont étés introduites par M. Freedman, L. Lovász and A. Schrijver (2007). Une fonctions sur les graphes ayant des matrices de connection de rang fini peut être calculée en temps polynomial sur sur toute famille de graphes de largeur arborescente (”tree-width”) bornée. Nous introduisons des matrices de joimture (”join matrices”) qui généralisent les matrices de connection, et nous permettons aux fonctions sur les graphes de prendre leurs valeurs dans des semianneaux tropicaux réels. Nous montrons qu’une fonctions sur les graphes ayant des matrices de jointure de rang fini peut être calculée en temps polynomial sur des graphes de largeur de clique (”clique-width”) bornée. Dans le cas des semi-anneaux commutatifs, cela reste vrai pour les graphes de largeur de clique linéaire bornée. B. Godlin, T. Kotek and J.A. Makowsky (2008) ont montré que certaines hypoths̀es de definissabilité en Logique du Second Ordre Monadique concernant des opérations sur les graphes entraine la finitude des rangs. Nous exhibons un ensemble non dénombrable d’opérations ayant une matrice de connection et des matrices de joimture de rang fini. Cela démontre que l’hypothèse de rang fini est beaucoup plus faible que l’hypothèse de definissabilité.
منابع مشابه
NILPOTENT GRAPHS OF MATRIX ALGEBRAS
Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...
متن کاملEquational theories of tropical semirings
This paper studies the equational theory of various exotic semirings presented in the literature. Exotic semirings are semirings whose underlying carrier set is some subset of the set of real numbers equipped with binary operations of minimum or maximum as sum, and addition as product. Two prime examples of such structures are the (max,+) semiring and the tropical semiring. It is shown that non...
متن کاملStone Relation Algebras
We develop Stone relation algebras, which generalise relation algebras by replacing the underlying Boolean algebra structure with a Stone algebra. We show that finite matrices over bounded linear orders form an instance. As a consequence, relation-algebraic concepts and methods can be used for reasoning about weighted graphs. We also develop a fixpoint calculus and apply it to compare different...
متن کاملSemirings and pseudo MV algebras
In this paper, we describe the relationships between pseudo MV algebras and semirings. We also give definitions of automata on lattice ordered semirings, prove that the family of K-Languages is closed under union, and discuss the conditions for the closedness of families of K-languages under intersection, generalized intersection and reversal operations.
متن کاملProving Termination of Graph Transformation Systems Using Weighted Type Graphs over Semirings
We introduce techniques for proving uniform termination of graph transformation systems, based on matrix interpretations for string rewriting. We generalize this technique by adapting it to graph rewriting instead of string rewriting and by generalizing to ordered semirings. In this way we obtain a framework which includes the tropical and arctic type graphs of [5] and a new variant of arithmet...
متن کامل