An asymptotic numerical method for fourth order singular perturbation problems with a discontinuous source term

نویسندگان

  • V. Shanthi
  • N. Ramanujam
چکیده

Singularly perturbed two-point boundary-value problems (BVPs) for fourth-order ordinary differential equations (ODEs) with a small positive parameter multiplying the highest derivative with a discontinuous source term is considered. The given fourth-order BVP is transformed into a system of weakly coupled systems of two second-order ODEs, one without the parameter and the other with the parameter ε multiplying the highest derivative, and suitable boundary conditions. In this paper a computational method for solving this system is presented. In this method we first find the zero-order asymptotic approximation expansion of the solution of the weakly coupled system. Then the system is decoupled by replacing the first component of the solution by its zero-order asymptotic approximation expansion of the solution in the second equation. Then the second equation is solved by the numerical method, which is constructed for this problem and which involves an appropriate piecewise-uniform mesh.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equidistribution grids for two-parameter convection–diffusion boundary-value problems

In this article, we propose an adaptive grid based on mesh equidistribution principle for two-parameter convection-diffusion boundary value problems with continuous and discontinuous data. A numerical algorithm based on an upwind finite difference operator and an appropriate adaptive grid is constructed. Truncation errors are derived for both continuous and discontinuous problems. Parameter uni...

متن کامل

Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term

This paper presents the high order frequency-amplitude relationship for nonlinear transversely vibrating beams with odd and even nonlinearities, using Homotopy Perturbation Method with an auxiliary term (HPMAT). The governing equations of vibrating buckled beam, beam carrying an intermediate lumped mass, and quintic nonlinear beam are investigated to exhibit the reliability and ability of the p...

متن کامل

An efficient numerical method for singularly perturbed second order ordinary differential equation

In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...

متن کامل

Singularly perturbed convection diffusion problems with boundary and weak interior layers

In this paper a singularly perturbed convection–diffusion equation with a discontinuous source term is examined. Boundary and weak interior layers appear in the solution. A numerical method is constructed for this problem which involves an appropriate piecewise-uniform mesh. The method is shown to be uniformly convergent with respect to the singular perturbation parameter.

متن کامل

The Method of Asymptotic Inner Boundary Condition for Singular Perturbation Problems

The method of Asymptotic Inner Boundary Condition for Singularly Perturbed Two-Point Boundary value Problems is presented. By using a terminal point, the original second order problem is divided in to two problems namely inner region and outer region problems. The original problem is replaced by an asymptotically equivalent first order problem and using the stretching transformation, the asympt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Comput. Math.

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2008