Efcient Chebyshev-Legendre Galerkin Methods for Elliptic Problems
نویسنده
چکیده
We introduce a new and efficient Chebyshev-Legendre Galerkin method for elliptic problems. The new method is based on a Legendre-Galerkin formulation, but only the Chebyshev-Gauss-Lobatto points are used in the computation. Hence, it enjoys advantages of both the LegendreGalerkin and Chebyshev-Galerkin methods.
منابع مشابه
Eecient Chebyshev-legendre Galerkin Methods for Elliptic Problems
We introduce a new and eecient Chebyshev-Legendre Galerkin method for elliptic problems. The new method is based on a Legendre-Galerkin formulation, but only the Chebyshev-Gauss-Lobatto points are used in the computation. Hence, it enjoys advantages of both the Legendre-Galerkin and Chebyshev-Galerkin methods.
متن کاملOn error estimates for Galerkin spectral discretizations of parabolic problems with nonsmooth initial data
We analyze the Legendre and Chebyshev spectral Galerkin semidiscretizations of a one dimensional homogeneous parabolic problem with nonconstant coefficients. We present error estimates for both smooth and nonsmooth data. In the Chebyshev case a limit in the order of approximation is established. On the contrary, in the Legendre case we find an arbitrary high order of convegence.
متن کاملChebyshev–legendre Spectral Viscosity Method for Nonlinear Conservation Laws∗
In this paper, a Chebyshev–Legendre spectral viscosity (CLSV) method is developed for nonlinear conservation laws with initial and boundary conditions. The boundary conditions are dealt with by a penalty method. The viscosity is put only on the high modes, so accuracy may be recovered by postprocessing the CLSV approximation. It is proved that the bounded solution of the CLSV method converges t...
متن کاملEfficient Spectral Sparse Grid Methods and Applications to High-Dimensional Elliptic Problems
We develop in this paper some efficient algorithms which are essential to implementations of spectral methods on the sparse grid by Smolyak’s construction based on a nested quadrature. More precisely, we develop a fast algorithm for the discrete transform between the values at the sparse grid and the coefficients of expansion in a hierarchical basis; and by using the aforementioned fast transfo...
متن کاملGegenbauer Tau Methods With and Without Spurious Eigenvalues
Abstract. It is proven that a class of Gegenbauer tau approximations to a 4th order differential eigenvalue problem of hydrodynamic type provide real, negative, and distinct eigenvalues as for the exact solutions. This class of Gegenbauer tau methods includes Chebyshev and Legendre Galerkin and ‘inviscid’ Galerkin but does not include Chebyshev and Legendre tau. Rigorous and numerical results s...
متن کامل