Second harmonic imaging of membrane potential of neurons with retinal.
نویسندگان
چکیده
We present a method to optically measure and image the membrane potential of neurons, using the nonlinear optical phenomenon of second harmonic generation (SHG) with a photopigment retinal as the chromophore [second harmonic retinal imaging of membrane potential (SHRIMP)]. We show that all-trans retinal, when adsorbed to the plasma membrane of living cells, can report on the local electric field via its change in SHG. Using a scanning mode-locked Ti-sapphire laser, we collect simultaneous two-photon excited fluorescence (TPEF) and SHG images of retinal-stained kidney cells and cultured pyramidal neurons. Patch clamp experiments on neurons stained with retinal show an increase of 25% in SHG intensity per 100-mV depolarization. Our data are the first demonstration of optical measurements of membrane potential of mammalian neurons with SHG. SHRIMP could have wide applicability in neuroscience and, by modifying rhodopsin, could in principle be subject for developing genetically engineered voltage sensors.
منابع مشابه
Transcranial Focused Ultrasound Modulates Electrical Behavior of the Neurons: Design and Implementation of a Model
Background: Recently, ultrasonic neuromodulation research has been an important and interesting issue. Ultrasonic neuromodulation is possible by the use of low-intensity transcranial focused ultrasound (tFUS) to stimulate or inhibit the neural structures. The primary capability of this method is the improvement in the treatment progress of certain neurological and psychiatric disorders noninvas...
متن کاملMembrane potential dynamics of axons in cultured hippocampal neurons probed by second-harmonic-generation imaging.
The electrical properties of axons critically influence the nature of communication between neurons. However, due to their small size, direct measurement of membrane potential dynamics in intact and complex mammalian axons has been a challenge. Furthermore, quantitative optical measurements of axonal membrane potential dynamics have not been available. To characterize the basic principles of so...
متن کاملOptical recording of action potentials with second-harmonic generation microscopy.
Nonlinear microscopy has proven to be essential for neuroscience investigations of thick tissue preparations. However, the optical recording of fast (approximately 1 msec) cellular electrical activity has never until now been successfully combined with this imaging modality. Through the use of second-harmonic generation microscopy of primary Aplysia neurons in culture labeled with 4-[4-(dihexyl...
متن کاملPorphyrins for Probing Electrical Potential Across Lipid Bilayer Membranes by Second Harmonic Generation**
Neurons communicate by using electrical signals, mediated by transient changes in the voltage across the plasma membrane. Optical techniques for visualizing these transmembrane potentials could revolutionize the field of neurobiology by allowing the spatial profile of electrical activity to be imaged in real time with high resolution, along individual neurons or groups of neurons within their n...
متن کاملLabel-free nonlinear optical imaging of mouse retina.
A nonlinear optical (NLO) microscopy system integrating stimulated Raman scattering (SRS), two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) was developed to image fresh mouse retinas. The morphological and functional details of various retinal layers were revealed by the endogenous NLO signals. Particularly, high resolution label-free imaging of retinal neurons and ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 9 5 شماره
صفحات -
تاریخ انتشار 2004