On the Diophantine equation |axn - byn | = 1

نویسندگان

  • Michael A. Bennett
  • Benne de Weger
چکیده

If a, b and n are positive integers with b ≥ a and n ≥ 3, then the equation of the title possesses at most one solution in positive integers x and y, with the possible exceptions of (a, b, n) satisfying b = a + 1, 2 ≤ a ≤ min{0.3n, 83} and 17 ≤ n ≤ 347. The proof of this result relies on a variety of diophantine approximation techniques including those of rational approximation to hypergeometric functions, the theory of linear forms in logarithms and recent computational methods related to lattice-basis reduction. Additionally, we compare and contrast a number of these last mentioned techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ternary Diophantine Equations via Galois Representations and Modular Forms

In this paper, we develop techniques for solving ternary Diophantine equations of the shape Axn + Byn = Cz2 , based upon the theory of Galois representations and modular forms. We subsequently utilize these methods to completely solve such equations for various choices of the parameters A, B and C . We conclude with an application of our results to certain classical polynomial-exponential equat...

متن کامل

RECIPES FOR TERNARY DIOPHANTINE EQUATIONS OF SIGNATURE (p, p, k)

In this paper, we survey recent work on ternary Diophantine equations of the shape Axn + Byn = Czm for m ∈ {2, 3, n} where n ≥ 5 is prime. Our goal is to provide a simple procedure which, given A, B, C and m, enables us to decide whether techniques based on the theory of Galois representations and modular forms suffice to ensure that corresponding ternary equations lack nontrivial solutions in ...

متن کامل

On the Diophantine Equation x^6+ky^3=z^6+kw^3

Given the positive integers m,n, solving the well known symmetric Diophantine equation xm+kyn=zm+kwn, where k is a rational number, is a challenge. By computer calculations, we show that for all integers k from 1 to 500, the Diophantine equation x6+ky3=z6+kw3 has infinitely many nontrivial (y≠w) rational solutions. Clearly, the same result holds for positive integers k whose cube-free part is n...

متن کامل

A Class of Recurrent Sequences Exhibiting Some Exciting Properties of Balancing Numbers

The balancing numbers are natural numbers n satisfying the Diophantine equation 1 + 2 + 3 + · · · + (n − 1) = (n + 1) + (n + 2) + · · · + (n + r); r is the balancer corresponding to the balancing number n.The n balancing number is denoted by Bn and the sequence {Bn} ∞ n=1 satisfies the recurrence relation Bn+1 = 6Bn−Bn−1. The balancing numbers posses some curious properties, some like Fibonacci...

متن کامل

On a (2,2)-rational Recursive Sequence

We investigate the asymptotic behavior of the recursive difference equation yn+1 = (α+ βyn)/(1 + yn−1) when the parameters α < 0 and β ∈ R. In particular, we establish the boundedness and the global stability of solutions for different ranges of the parameters α and β. We also give a summary of results and open questions on the more general recursive sequences yn+1 = (a+ byn)/(A+Byn−1), when th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 67  شماره 

صفحات  -

تاریخ انتشار 1998