Predicting Species Diversity of Benthic Communities within Turbid Nearshore Using Full-Waveform Bathymetric LiDAR and Machine Learners
نویسندگان
چکیده
Epi-macrobenthic species richness, abundance and composition are linked with type, assemblage and structural complexity of seabed habitat within coastal ecosystems. However, the evaluation of these habitats is highly hindered by limitations related to both waterborne surveys (slow acquisition, shallow water and low reactivity) and water clarity (turbid for most coastal areas). Substratum type/diversity and bathymetric features were elucidated using a supervised method applied to airborne bathymetric LiDAR waveforms over Saint-Siméon-Bonaventure's nearshore area (Gulf of Saint-Lawrence, Québec, Canada). High-resolution underwater photographs were taken at three hundred stations across an 8-km(2) study area. Seven models based upon state-of-the-art machine learning techniques such as Naïve Bayes, Regression Tree, Classification Tree, C 4.5, Random Forest, Support Vector Machine, and CN2 learners were tested for predicting eight epi-macrobenthic species diversity metrics as a function of the class number. The Random Forest outperformed other models with a three-discretized Simpson index applied to epi-macrobenthic communities, explaining 69% (Classification Accuracy) of its variability by mean bathymetry, time range and skewness derived from the LiDAR waveform. Corroborating marine ecological theory, areas with low Simpson epi-macrobenthic diversity responded to low water depths, high skewness and time range, whereas higher Simpson diversity relied upon deeper bottoms (correlated with stronger hydrodynamics) and low skewness and time range. The degree of species heterogeneity was therefore positively linked with the degree of the structural complexity of the benthic cover. This work underpins that fully exploited bathymetric LiDAR (not only bathymetrically derived by-products), coupled with proficient machine learner, is able to rapidly predict habitat characteristics at a spatial resolution relevant to epi-macrobenthos diversity, ranging from clear to turbid waters. This method might serve both to nurture marine ecological theory and to manage areas with high species heterogeneity where navigation is hazardous and water clarity opaque to passive optical sensors.
منابع مشابه
Data-Driven Approach to Benthic Cover Type Classification Using Bathymetric LiDAR Waveform Analysis
A data-driven method for describing the benthic cover type based on full-waveform bathymetric LiDAR data analysis is presented. The waveform of the bathymetric LiDAR return pulse is first modeled as a sum of three functions: a Gaussian pulse representing the surface return, a function modeling the backscatter and another Gaussian pulse modeling the return from the bottom surface. Two sets of va...
متن کاملPerformance Assessment of High Resolution Airborne Full Waveform LiDAR for Shallow River Bathymetry
We evaluate the performance of full waveform LiDAR decomposition algorithms with a high-resolution single band airborne LiDAR bathymetry system in shallow rivers. A continuous wavelet transformation (CWT) is proposed and applied in two fluvial environments, and the results are compared to existing echo retrieval methods. LiDAR water depths are also compared to independent field measurements. In...
متن کاملHabitat Classification of Temperate Marine Macroalgal Communities Using Bathymetric LiDAR
Here, we evaluated the potential of using bathymetric Light Detection and Ranging (LiDAR) to characterise shallow water (<30 m) benthic habitats of high energy subtidal coastal environments. Habitat classification, quantifying benthic substrata and macroalgal communities, was achieved in this study with the application of LiDAR and underwater video groundtruth data using automated classificatio...
متن کاملThe use of the SHOALS waveforms to assess habitat complexity within the benthoscape
Water-land interfaces develop such heterogeneous ecological niches that the natural capital, deeply correlated with biodiversity, of these biotopes embodies one of the most important on earth. In these systems, widely dispersed field or ship-based observations and lack of broad scale data have historically precluded quantification of large-scale patterns and processes and hindered management ef...
متن کاملBenthic Macroinvertabrate distribution in Tajan River Using Canonical Correspondence Analysis
The distribution of macroinvertebrate communities from 5 sampling sites of the Tajan River were used to examine the relationship among physiochemical parameters with macroinvertebrate communities and also to assess ecological classification system as a tool for the management and conservation purposes. The amount of variation explained in macroinvertebrate taxa composition is within values r...
متن کامل