Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapeutics
نویسندگان
چکیده
The p53 tumor suppressor protein is a transcriptional factor that plays a key role in regulation of several cellular processes, including the cell cycle, apoptosis, DNA repair, and angiogenesis. The murine double minute 2 (MDM2) protein is the primary cellular inhibitor of p53, functioning through direct interaction with p53. Design of non-peptide, small-molecule inhibitors that block the MDM2-p53 interaction has been sought as an attractive strategy to activate p53 for the treatment of cancer and other human diseases. Major advances have been made in the design of small-molecule inhibitors of the MDM2-p53 interaction in recent years, and several compounds have moved into advanced preclinical development or clinical trials. In this chapter, we will highlight these advances in the design and development of MDM2 inhibitors, and discuss lessons learned from these efforts.
منابع مشابه
The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy
The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...
متن کاملالقای آپوپتوز وابسته به p53 در ردهی سلولی لوسمی لنفوبلاستیک حاد پیشساز لنفوسیت B (NALM-6) توسط مولکول کوچک RITA
Background and Objective: The use of low-molecular-weight, nonpeptidic molecules that degrade the interaction between the p53 protein and its negative regulator MDM2 (Murine- double minute colon 2) is a new therapeutic strategy for treatment of various types of cancer. One of these agents is RITA (reactivation of p53 and induction of tumor cell apoptosis) which binds to p53 protein and inhibits...
متن کاملInhibition of the p53-MDM2 interaction: targeting a protein-protein interface.
MDM2 inhibits p53 transcriptional activity, favors its nuclear export, and stimulates its degradation. Inhibition of the p53-MDM2 interaction with synthetic molecules should therefore lead to both the nuclear accumulation and the activation of p53 followed by the death of the tumor cells from apoptosis. Inhibitors of the p53-MDM2 interaction might be attractive new anticancer agents that could ...
متن کاملTargeting the MDM2/MDM4 interaction interface as a promising approach for p53 reactivation therapy.
Restoration of wild-type p53 tumor suppressor function has emerged as an attractive anticancer strategy. Therapeutics targeting the two p53-negative regulators, MDM2 and MDM4, have been developed, but most agents selectively target the ability of only one of these molecules to interact with p53, leaving the other free to operate. Therefore, we developed a method that targets the activity of MDM...
متن کاملSmall Molecule Inhibitors of MDM2-p53 and MDMX-p53 Interactions as New Cancer Therapeutics
Inactivation of the function of tumor suppressor p53 is common in human cancers. In approximately half of human cancers, the tumor suppressor function of p53 is inactivated by deletion or mutation of TP53, the gene encoding p53 protein. In the remaining 50% of human cancers, p53 tumor suppressor function can be effectively inhibited by oncoprotein MDM2 or its homolog MDMX. Since inhibition of p...
متن کامل