Détermination Des Nano Structure Par Les Méthodes Magnétiques
نویسنده
چکیده
Milling time is one of the most important factors for achieving the desired particle size of milled powders. Generally, the particle size of milled powders decreases with increasing milling time. However, long milling time results in agglomeration of small particles for some powders [9]. The using of the NDT method gives lot information about these microstructures in particular the magnetic NDT techniques [1-2]. In this paper, we examine the contribution of micromagnetic techniques in-the characterisation of nanostructure materials. Nanocrystalline Fe(1-x) Cox , Fe ,Fe-Co-Cu mixtures have been prepared by mechanical alloying using a planetary ball mill under several milling conditions. The residual, the coerecitivity, the saturation moment and the eddy current methods can give the most result about the nanostructure determination Eddy currents has proved their efficiently for characterization a microstructure maters. In this study we try to make a new approach for application eddy current testing. The morphology of the nanostructure powders can be described by an assembly of nanocrystalline grains directed at random, knitted to each other by joints of grains. The exploitation of the experimental results was leaded jointly and has permitted a microstructural average description of these powders. In other respect, the use of these techniques permitted a comparison of experimental results and knowledge of structural and magnetic properties of nanostructure powders. This permitted to arrive to a conclusion of an average microstructure and an average magnetically behaviour of powders. Keyword: NDT, nanostructure, powders, BN, remanence, corecitivity
منابع مشابه
Apprentissage: cours 2 Méthodes par moyennage local - Consistance des méthodes par partition
On considère la régression au sens des moindres carrés avec des entrées dans X = R et des sorties réelles bornées : Y = [−B,B] pour B > 0 et `(y, y′) = (y − y′)2. Une fonction cible est donc f(x) = E[Y |X = x]. On considère un ensemble d’entrâınement Dn = {(X1, Y1), . . . , (Xn, Yn)}. Principe des méthodes par moyennage local : Prédire par la moyenne pondérée des Yi pour des Xi voisins de x. On...
متن کاملLa lutte contre les argaside, gale psoroptique et phtiriase des moutons par l'administration des insecticides par la vole buccale
متن کامل