Multi-label classification by exploiting label correlations
نویسندگان
چکیده
Department of Computer Science and Technology, Tongji University, Shanghai 201804, PR China Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2G7, Canada Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai 201804, PR China d System Research Institute, Polish Academy of Sciences, Warsaw, Poland e School of Software, Jiangxi Agricultural University, Nanchang 330013, PR China
منابع مشابه
Exploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملMulti-Label Learning by Exploiting Label Correlations Locally
It is well known that exploiting label correlations is important for multi-label learning. Existing approaches typically exploit label correlations globally, by assuming that the label correlations are shared by all the instances. In real-world tasks, however, different instances may share different label correlations, and few correlations are globally applicable. In this paper, we propose the ...
متن کاملMulti-Label Learning with Global and Local Label Correlation
It is well-known that exploiting label correlations is important to multi-label learning. Existing approaches either assume that the label correlations are global and shared by all instances; or that the label correlations are local and shared only by a data subset. In fact, in the real-world applications, both cases may occur that some label correlations are globally applicable and some are sh...
متن کاملLarge-Scale Multi-Label Learning with Incomplete Label Assignments
Multi-label learning deals with the classification problems where each instance can be assigned with multiple labels simultaneously. Conventional multi-label learning approaches mainly focus on exploiting label correlations. It is usually assumed, explicitly or implicitly, that the label sets for training instances are fully labeled without any missing labels. However, in many real-world multi-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 41 شماره
صفحات -
تاریخ انتشار 2014