Exploring the boundaries of a light-driven molecular motor design: new sterically overcrowded alkenes with preferred direction of rotation.

نویسندگان

  • Richard A van Delden
  • Matthijs K J ter Wiel
  • Harmen de Jong
  • Auke Meetsma
  • Ben L Feringa
چکیده

Insight in the steric and electronic parameters governing isomerization processes in artificial molecular motors is essential in order to design more advanced motor systems. A subtle balance of steric parameters and the combination of helical and central chirality are key features of light-driven unidirectional rotary molecular motors constructed so far. In an approach to decrease the steric hindrance around the central olefinic bond (rotary axis) and thereby lowering the energy barrier for helix inversion resulting in an increased rotation rate, the boundaries of our molecular motor design are explored. In a new design of a light-driven molecular motor based on a sterically overcrowded alkene the methyl substituent adjacent to the stereogenic center, which is responsible for the control of the direction of rotation, is shifted one position away from the fjord region of the molecule compared to the second-generation motor systems. In contrast to previously developed light-driven molecular motors, there is a preference for the methyl substituent to adopt a pseudo-equatorial orientation. Nevertheless, this new type of motor is capable of functioning as a rotary molecular motor, albeit not with full unidirectionality. Under the combined influence of light and heat, there is a preferred clockwise rotation of one half of the molecule. Surprisingly, the effect of shifting the methyl substituent on the energy barrier for helix inversion is small and even a slight increase in the barrier is observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Third-Generation Light-Driven Symmetric Molecular Motors

Symmetric molecular motors based on two overcrowded alkenes with a notable absence of a stereogenic center show potential to function as novel mechanical systems in the development of more advanced nanomachines offering controlled motion over surfaces. Elucidation of the key parameters and limitations of these third-generation motors is essential for the design of optimized molecular machines b...

متن کامل

Increased speed of rotation for the smallest light-driven molecular motor.

In this paper we present the smallest artificial light-driven molecular motor consisting of only 28 carbon and 24 hydrogen atoms. The concept of controlling directionality of rotary movement at the molecular level by introduction of a stereogenic center next to the central olefinic bond of a sterically overcrowded alkene does not only hold for molecular motors with six-membered rings, but is al...

متن کامل

Unravelling the electronic structure and dynamics of an isolated molecular rotary motor in the gas-phase.

Light-driven molecular motors derived from chiral overcrowded alkenes are an important class of compounds in which sequential photochemical and thermal rearrangements result in unidirectional rotation of one part of the molecule with respect to another. Here, we employ anion photoelectron spectroscopy to probe the electronic structure and dynamics of a unidirectional molecular rotary motor anio...

متن کامل

Understanding the dynamics behind the photoisomerization of a light-driven fluorene molecular rotary motor.

Light-driven molecular rotary motors derived from chiral overcrowded alkenes represent a broad class of compounds for which photochemical rearrangements lead to large scale motion of one part of the molecule with respect to another. It is this motion/change in molecular shape that is employed in many of their applications. A key group in this class are the molecular rotary motors that undergo u...

متن کامل

Kinetic analysis of the rotation rate of light-driven unidirectional molecular motors.

The combination of a photochemical and a thermal equilibrium in overcrowded alkenes, which is the basis for unidirectional rotation of light-driven molecular rotary motors, is analysed in relation to the actual average rotation rates of such structures. Experimental parameters such as temperature, concentration and irradiation intensity could be related directly to the effective rates of rotati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 2 10  شماره 

صفحات  -

تاریخ انتشار 2004