Ultrastructural characteristics and conduction velocity of olfactory receptor neuron axons in the olfactory marker protein-null mouse.

نویسندگان

  • E R Griff
  • C A Greer
  • F Margolis
  • M Ennis
  • M T Shipley
چکیده

Olfactory receptor neuron (ORN) axon diameters and the conduction velocity of the compound action potential along ORN axons were studied in olfactory marker protein (OMP)-null mice and genotypically matched controls. The compound action potential was distinguished from postsynaptic field potentials by its shorter latency, its persistence following application of cobalt or kynurenic acid that blocked postsynaptic responses, and its ability to follow paired-pulse stimulation at 300 Hz. Blockade of the postsynaptic field responses by kynurenic acid indicates that in the mouse, as in the rat, glutamate is the olfactory nerve transmitter. The mean conduction velocity of ORNs in wild-type control mice was 0. 47+/-0.19 (S.E.M.) m/s (n=5), similar to the conduction velocity reported for other mammals. The mean diameter of ORN axons in control mice was 0.202+/-0.005 and 0.261+/-0.006 microm in the OMP-null mice. This increase in fiber diameter in the OMP-nulls predicts an increase in impulse conduction velocity. However, the mean conduction velocity of OMP-null mice, 0.38+/-0.03 m/s (n=6), was not significantly different from control (P>0.1). The conduction velocity predicted by the increase in fiber diameter in OMP-null mice was within the 95% confidence interval of the measured value. Thus, OMP-null ORNs are normal with respect to the conduction velocity of their axons. The number of axodendritic synapses in the glomeruli of OMP-null mice is higher than in congenic wild-type mice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impulse conduction of olfactory receptor neuron axons.

Compound action potentials were recorded from rat olfactory receptor neuron axons at measured distances from the stimulation electrode along the lateral surface of the main olfactory bulb. Distances were plotted as a function of the latencies measured from stimulus onset to the prominent negative trough of the triphasic compound action potential. A straight line was fitted to these data to calc...

متن کامل

OMP-ZsGreen fluorescent protein transgenic mice for visualisation of olfactory sensory neurons in vivo and in vitro.

Research into the biology of the mammalian olfactory system would be greatly enhanced by transgenic reporter mice with cell-specific fluorescence. To this end we previously generated a mouse whose olfactory ensheathing cells (OECs) express DsRed driven by the S100ß promoter. We present here a transgenic reporter mouse whose olfactory sensory neurons express ZsGreen, driven by the olfactory mark...

متن کامل

Histochemical study of the olfactory rosette of Cyprinus carpio (Linnaeus, 1758)

  The distribution and localization of acid and neutral mucins in various cells lining the olfactory epithelium of Cyprinus carpio have been studied histochemically by employing the PAS-AB technique. Variations in the localization of protein in different cells lining the olfactory epithelium have been correlated with the functional significance of the region concerned. Intense localization of t...

متن کامل

Repair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell

Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...

متن کامل

Tenascin-C is an inhibitory boundary molecule in the developing olfactory bulb.

We recently described the boundary-like expression pattern of the extracellular matrix molecule tenascin-C (Tnc) in the developing mouse olfactory bulb (OB) (Shay et al., 2008). In the present study, we test the hypothesis that Tnc inhibits olfactory sensory neuron (OSN) axon growth in the developing OB before glomerulogenesis. The period of time before glomerular formation begins, when axons r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research

دوره 866 1-2  شماره 

صفحات  -

تاریخ انتشار 2000