Residues 240–250 in the C-Terminus of the Pirh2 Protein Complement the Function of the RING Domain in Self-Ubiquitination of the Pirh2 Protein

نویسندگان

  • Rami Abou Zeinab
  • Hong Wu
  • Consolato Sergi
  • Roger P. Leng
چکیده

Pirh2 is a p53 inducible gene that encodes a RING-H2 domain and is proposed to be a main regulator of p53 protein, thus fine tuning the DNA damage response. Pirh2 interacts physically with p53 and promotes its MDM2-independent ubiquitination and subsequent degradation as well as participates in an auto-regulatory feedback loop that controls p53 function. Pirh2 also self-ubiquitinates. Interestingly, Pirh2 is overexpressed in a wide range of human tumors. In this study, we investigated the domains and residues essential for Pirh2 self-ubiquitination. Deletions were made in each of the three major domains of Pirh2: the N-terminal domain (NTD), Ring domain (RING), and C-terminal domain (CTD). The effects of these deletions on Pirh2 self-ubiquitination were then assessed using in vitro ubiquitination assays. Our results demonstrate that the RING domain is essential, but not sufficient, for Pirh2 self-ubiquitination and that residues 240-250 of the C-terminal domain are also essential. Our results demonstrate that Pirh2 mediated p53 polyubiquitination occurs mainly through the K48 residue of ubiquitin in vitro. Our data further our understanding of the mechanism of Pirh2 self-ubiquitination and may help identify valuable therapeutic targets that play roles in reducing the effects of the overexpression of Pirh2, thus maximizing p53's response to DNA damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pirh2, a p53-Induced Ubiquitin-Protein Ligase, Promotes p53 Degradation

The p53 tumor suppressor exerts anti-proliferative effects in response to various types of stress including DNA damage and abnormal proliferative signals. Tight regulation of p53 is essential for maintaining normal cell growth and this occurs primarily through posttranslational modifications of p53. Here, we describe Pirh2, a gene regulated by p53 that encodes a RING-H2 domain-containing protei...

متن کامل

Pirh2 promotes ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1.

The cyclin-dependent kinase inhibitor p27(Kip1) is degraded in late G(1) phase by the ubiquitin-proteasome pathway, allowing cells to enter S phase. Due to accelerated degradation of p27(Kip1), various human cancers express low levels of p27(Kip1) associated with poor prognosis. S-phase kinase-associated protein 2, the F-box protein component of an SCF ubiquitin ligase complex, is implicated in...

متن کامل

Pirh2, a ubiquitin E3 ligase, inhibits p73 transcriptional activity by promoting its ubiquitination.

p73, a homolog of the tumor suppressor p53, transactivates many p53 target genes, leading to apoptosis or cell-cycle arrest. p73 has recently been reported to play an important role in tumor suppression in a mouse model. Here, we show that Pirh2 physically interacted with p73 and downregulated p73 function through its E3 ligase activity. Pirh2 promoted p73 ubiquitination in vivo and in vitro. I...

متن کامل

Signaling and Regulation Pirh2, a Ubiquitin E3 Ligase, Inhibits p73 Transcriptional Activity by Promoting Its Ubiquitination

p73, a homolog of the tumor suppressor p53, transactivates many p53 target genes, leading to apoptosis or cellcycle arrest. p73 has recently been reported to play an important role in tumor suppression in amousemodel. Here, we show that Pirh2 physically interacted with p73 and downregulated p73 function through its E3 ligase activity. Pirh2 promoted p73 ubiquitination in vivo and in vitro. Intr...

متن کامل

SCYL1 binding protein 1 promotes the ubiquitin-dependent degradation of Pirh2 and has tumor-suppressive function in the development of hepatocellular carcinoma.

Pirh2 is a Ring-H2 domain containing E3 ubiquitin ligase that targets several important tumor suppressor genes for proteasomal degradation. Overexpression of Pirh2 is frequently detected in many clinical tumor tissues including hepatocellular carcinoma (HCC). However, the molecular mechanism of Pirh2 activation in tumorigenesis still remains poorly understood. In this study, we find a Pirh2-bin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013