Higher-Order TV Methods - Enhancement via Bregman Iteration

نویسندگان

  • Martin Benning
  • Christoph Brune
  • Martin Burger
  • Jahn Müller
چکیده

In this work we analyze and compare two recent variational models for image denoising and improve their reconstructions by applying a Bregman iteration strategy. One of the standard techniques in image denoising, the ROF-model (cf. Rudin et al. in Physica D 60:259–268, 1992), is well known for recovering sharp edges of a signal or image, but also for producing staircase-like artifacts. In order to overcome these model-dependent deficiencies, total variation modifications that incorporate higher-order derivatives have been proposed (cf. Chambolle and Lions in Numer. Math. 76:167–188, 1997; Bredies et al. in SIAM J. Imaging Sci. 3(3):492–526, 2010). These models reduce staircasing for reasonable parameter choices. However, the combination of derivatives of different order leads to other undesired side effects, which we shall also highlight in several examples. The goal of this paper is to analyze capabilities and limitations of the different models and to improve their reconstructions in quality by introducing Bregman iterations. Besides general modeling and analysis we discuss efficient numerical realizations of Bregman iterations and modified versions thereof.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmented Lagrangian Method, Dual Methods, and Split Bregman Iteration for ROF, Vectorial TV, and High Order Models

In image processing, the Rudin-Osher-Fatemi (ROF) model [L. Rudin, S. Osher, and E. Fatemi, Physica D, 60(1992), pp. 259–268] based on total variation (TV) minimization has proven to be very useful. A lot of efforts have been devoted to obtain fast numerical schemes and overcome the non-differentiability of the model. Methods considered to be particularly efficient for the ROF model include the...

متن کامل

Bregman-EM-TV Methods with Application to Optical Nanoscopy

Measurements in nanoscopic imaging suffer from blurring effects concerning different point spread functions (PSF). Some apparatus even have PSFs that are locally dependent on phase shifts. Additionally, raw data are affected by Poisson noise resulting from laser sampling and "photon counts" in fluorescence microscopy. In these applications standard reconstruction methods (EM, filtered backproje...

متن کامل

L1 Unmixing and its Application to Hyperspectral Image Enhancement

Because hyperspectral imagery is generally low resolution, it is possible for one pixel in the image to contain several materials. The process of determining the abundance of representative materials in a single pixel is called spectral unmixing. We discuss the L1 unmixing model and fast computational approaches based on Bregman iteration. We then use the unmixing information and Total Variatio...

متن کامل

A Weighted Difference of Anisotropic and Isotropic Total Variation Model for Image Processing

We propose a weighted difference of anisotropic and isotropic total variation (TV) as a regularization for image processing tasks, based on the well-known TV model and natural image statistics. Due to the difference form of our model, it is natural to compute via a difference of convex algorithm (DCA). We draw its connection to the Bregman iteration for convex problems, and prove that the itera...

متن کامل

A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration

In this paper, we propose a unified primal-dual algorithm framework for two classes of problems that arise from various signal and image processing applications. We also show the connections to existing methods, in particular Bregman iteration [41] based method, such as linearized Bregman [42, 9, 10, 49] and split Bregman [31]. The convergence of the general algorithm framework is proved under ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2013