Fractional Brownian Motion Limit for a Model of Turbulent Transport
نویسندگان
چکیده
Passive scalar motion in a family of random Gaussian velocity fields with longrange correlations is shown to converge to persistent fractional Brownian motions in long times.
منابع مشابه
Fractional Brownian Motions and Enhanced Diffusion in a Unidirectional Wave-Like Turbulence
We study transport in random undirectional wave-like velocity fields with nonlinear dispersion relations. For this simple model, we have several interesting findings: (1) In the absence of molecular diffusion the entire family of fractional Brownian motions (FBMs), persistent or anti-persistent, can arise in the scaling limit. (2) The infrared cutoff may alter the scaling limit depending on whe...
متن کاملFractional Brownian Motions in a Limit of Turbulent Transport
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...
متن کاملExistence and Measurability of the Solution of the Stochastic Differential Equations Driven by Fractional Brownian Motion
متن کامل
On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملModeling turbulent wave-front phase as a fractional Brownian motion: a new approach.
We introduce a new, general formalism to model the turbulent wave-front phase by using fractional Brownian motion processes. Moreover, it extends results to non-Kolmogorov turbulence. In particular, generalized expressions for the Strehl ratio and the angle-of-arrival variance are obtained. These are dependent on the dynamic state of the turbulence.
متن کامل