Glycative Stress and Its Defense Machinery Glyoxalase 1 in Renal Pathogenesis
نویسندگان
چکیده
Chronic kidney disease is a major public health problem around the world. Because the kidney plays a role in reducing glycative stress, renal dysfunction results in increased glycative stress. In turn, glycative stress, especially that due to advanced glycated end products (AGEs) and their precursors such as reactive carbonyl compounds, exacerbates chronic kidney disease and is related to premature aging in chronic kidney disease, whether caused by diabetes mellitus or otherwise. Factors which hinder a sufficient reduction in glycative stress include the inhibition of anti-glycation enzymes (e.g., GLO-1), as well as pathogenically activated endoplasmic reticulum (ER) stress and hypoxia in the kidney. Promising strategies aimed at halting the vicious cycle between chronic kidney disease and increases in glycative stress include the suppression of AGE accumulation in the body and the enhancement of GLO-1 to strengthen the host defense machinery against glycative stress.
منابع مشابه
Novel Targets of Sulforaphane in Primary Cardiomyocytes Identified by Proteomic Analysis
Cardiovascular diseases represent the main cause of mortality in the industrialized world and the identification of effective preventive strategies is of fundamental importance. Sulforaphane, an isothiocyanate from cruciferous vegetables, has been shown to up-regulate phase II enzymes in cardiomyocytes and counteract oxidative stress-induced apoptosis. Aim of the present study was the identific...
متن کاملGlyoxalase I reduces glycative and oxidative stress and prevents age-related endothelial dysfunction through modulation of endothelial nitric oxide synthase phosphorylation
Endothelial dysfunction is a major contributor to cardiovascular disease (CVD), particularly in elderly people. Studies have demonstrated the role of glycation in endothelial dysfunction in nonphysiological models, but the physiological role of glycation in age-related endothelial dysfunction has been poorly addressed. Here, to investigate how vascular glycation affects age-related endothelial ...
متن کاملKRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: Implication for Cerebral Cavernous Malformation disease
KRIT1 (CCM1) is a disease gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease of proven genetic origin affecting 0.3-0.5% of the population. Previously, we demonstrated that KRIT1 loss-of-function is associated with altered redox homeostasis and abnormal activation of the redox-sensitive transcription factor c-Jun, which collectively result in pro-oxidat...
متن کاملNephrotoxin-Induced Renal Cell Injury Involving Biochemical Alterations and Its Prevention With Antioxidant
BACKGROUND Although nephrotoxic agents or nephrotoxins are known to induce acute renal cell injury, their cytotoxic action is not fully elucidated. It is thus crucial to explore such a cytotoxic mechanism and the increasing volume of reports indicated a significant involvement of oxidative stress. To test this possibility, we investigated if a nephrotoxin would exert oxidative stress, leading t...
متن کاملGlyoxalase I overexpression ameliorates renal ischemia-reperfusion injury in rats.
Methylglyoxal (MG), a highly reactive carbonyl compound generated by carbohydrate oxidation and glycolysis, is the major precursor of protein glycation and induces cytotoxicity leading to apoptosis. Although recent studies have emphasized that MG accumulates in not only chronic oxidative stress-related diseases but also acute hypoxic conditions, the pathogenic contribution of MG in acute diseas...
متن کامل