Absence of 2-hydroxylated sphingolipids is compatible with normal neural development but causes late-onset axon and myelin sheath degeneration.

نویسندگان

  • Inge Zöller
  • Marion Meixner
  • Dieter Hartmann
  • Heinrich Büssow
  • Rainer Meyer
  • Volkmar Gieselmann
  • Matthias Eckhardt
چکیده

Sphingolipids containing 2-hydroxylated fatty acids are among the most abundant lipid components of the myelin sheath and therefore are thought to play an important role in formation and function of myelin. To prove this hypothesis, we generated mice lacking a functional fatty acid 2-hydroxylase (FA2H) gene. FA2H-deficient (FA2H(-/-)) mice lacked 2-hydroxylated sphingolipids in the brain and in peripheral nerves. In contrast, nonhydroxylated galactosylceramide was increased in FA2H(-/-) mice. However, oligodendrocyte differentiation examined by in situ hybridization with cRNA probes for proteolipid protein and PDGFalpha receptor and the time course of myelin formation were not altered in FA2H(-/-) mice compared with wild-type littermates. Nerve conduction velocity measurements of sciatic nerves revealed no significant differences between FA2H(-/-) and wild-type mice. Moreover, myelin of FA2H(-/-) mice up to 5 months of age appeared normal at the ultrastructural level, in the CNS and peripheral nervous system. Myelin thickness and g-ratios were normal in FA2H(-/-) mice. Aged (18-month-old) FA2H(-/-) mice, however, exhibited scattered axonal and myelin sheath degeneration in the spinal cord and an even more pronounced loss of stainability of myelin sheaths in sciatic nerves. These results show that structurally and functionally normal myelin can be formed in the absence of 2-hydroxylated sphingolipids but that its long-term maintenance is strikingly impaired. Because axon degeneration appear to start rather early with respect to myelin degenerations, these lipids might be required for glial support of axon function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myelin Sheath Survival following Myelinated Nerve Fibers Axonal Degeneration

Axonal contact plays a critical role in initiating myelin formation by Schwann cells. However, recent studies of “double myelination” have indicated that myelin maintenance continues in Schwann cells completely displaced from physical contact with the axon. This raises the possibility either that diffusible trophic factors are produced by the axon, or that the axon is not required for myelin ma...

متن کامل

Subacute combined degeneration : report of two cases

Subacute combined degeneration ( SCD) due to vitamin B12 deficiency is common in North of Europe but sometimes it is seen in Iran. It can develop before the symptoms of anemia is obvious, with myelin injury and then axon and even neuron destruction in spinal cord, brain, optic and peripheral nerves. In this study two cases are reported; in the first patient, this disease in manifested by vitami...

متن کامل

Oligodendrocyte Lineage and Subventricular Zone Response to Traumatic Axonal Injury in the Corpus Callosum

Traumatic brain injury frequently causes traumatic axonal injury (TAI) in white matter tracts. Experimental TAI in the corpus callosum of adult mice was used to examine the effects on oligodendrocyte lineage cells and myelin in conjunction with neuroimaging. The injury targeted the corpus callosum over the subventricular zone, a source of neural stem/progenitor cells. Traumatic axonal injury wa...

متن کامل

Absence of functional peroxisomes from mouse CNS causes dysmyelination and axon degeneration.

Peroxisomal metabolism is essential for normal brain development both in men and in mice. Using conditional knock-out mice, we recently showed that peroxisome deficiency in liver has a severe and persistent impact on the formation of cortex and cerebellum, whereas absence of functional peroxisomes from the CNS only causes developmental delays without obvious alteration of brain architecture. We...

متن کامل

Myelin sheath survival after guanethidine-induced axonal degeneration

Membrane-membrane interactions between axons and Schwann cells are required for initial myelin formation in the peripheral nervous system. However, recent studies of double myelination in sympathetic nerve have indicated that myelin sheaths continue to exist after complete loss of axonal contact (Kidd, G. J., and J. W. Heath. 1988. J. Neurocytol. 17:245-261). This suggests that myelin maintenan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 39  شماره 

صفحات  -

تاریخ انتشار 2008