Response of bacterioplankton activity in an Arctic fjord system to elevated pCO2: results from a mesocosm perturbation study
نویسندگان
چکیده
The effect of elevated seawater carbon dioxide (CO2) on the activity of a natural bacterioplankton community in an Arctic fjord system was investigated by a mesocosm perturbation study in the frame of the European Project on Ocean Acidification (EPOCA). A pCO2 range of 175– 1085 μatm was set up in nine mesocosms deployed in the Kongsfjorden (Svalbard). The activity of natural extracellular enzyme assemblages increased in response to acidification. Rates of β-glucosidase and leucine-aminopeptidase increased along the gradient of mesocosm pCO2. A decrease in seawater pH of 0.5 units almost doubled rates of both enzymes. Heterotrophic bacterial activity was closely coupled to phytoplankton productivity in this experiment. The bacterioplankton community responded to rising chlorophyll a concentrations after a lag phase of only a few days with increasing protein production and extracellular enzyme activity. Time-integrated primary production and bacterial protein production were positively correlated, strongly suggesting that higher amounts of phytoplankton-derived organic matter were assimilated by heterotrophic bacteria at increased primary production. Primary production increased under high pCO2 in this study, and it can be suggested that the efficient heterotrophic carbon utilisation had the potential to counteract the enhanced autotrophic CO2 fixation. However, our results also show that beneficial pCO2-related effects on bacterial activity can be mitigated by the top-down control of bacterial abundances in natural microbial communities.
منابع مشابه
Effect of elevated CO2 on the dynamics of particle-attached and free-living bacterioplankton communities in an Arctic fjord
In the frame of the European Project on Ocean Acidification (EPOCA), the response of an Arctic pelagic community (<3 mm) to a gradient of seawater pCO2 was investigated. For this purpose 9 large-scale in situ mesocosms were deployed in Kongsfjorden, Svalbard (7856.2 N, 1153.6 E), in 2010. The present study investigates effects on the communities of particle-attached (PA; >3 μm) and free-living ...
متن کاملOcean acidification shows negligible impacts on high-latitude bacterial community structure in coastal pelagic mesocosms
The impact of ocean acidification and carbonation on microbial community structure was assessed during a large-scale in situ costal pelagic mesocosm study, included as part of the EPOCA 2010 Arctic campaign. The mesocosm experiment included ambient conditions (fjord) and nine mesocosms with pCO2 levels ranging from ∼ 145 to ∼ 1420 μatm. Samples for the present study were collected at ten time p...
متن کاملStimulated Bacterial Growth under Elevated pCO2: Results from an Off-Shore Mesocosm Study
Marine bacteria are the main consumers of freshly produced organic matter. Many enzymatic processes involved in the bacterial digestion of organic compounds were shown to be pH sensitive in previous studies. Due to the continuous rise in atmospheric CO2 concentration, seawater pH is presently decreasing at a rate unprecedented during the last 300 million years but the consequences for microbial...
متن کاملCO 2 increases 14 C primary production in an Arctic plankton community
Responses to ocean acidification in plankton communities were studied during a CO2-enrichment experiment in the Arctic Ocean, accomplished from June to July 2010 in Kongsfjorden, Svalbard (78562 N, 11536 E). Enclosed in 9 mesocosms (volume: 43.9–47.6 m3), plankton was exposed to CO2 concentrations, ranging from glacial to projected mid-next-century levels. Fertilization with inorganic nutrients...
متن کاملContrasting response to nutrient manipulation in Arctic mesocosms are reproduced by a minimum microbial food web model
A minimum mathematical model of the marine pelagic microbial food web has previously shown to be able to reproduce central aspects of observed system response to different bottom-up manipulations in a mesocosm experiment Microbial Ecosystem Dynamics (MEDEA) in Danish waters. In this study, we apply this model to two mesocosm experiments (Polar Aquatic Microbial Ecology (PAME)-I and PAME-II) con...
متن کامل