Impact of rainfall manipulations and biotic controls on soil respiration in Mediterranean and desert ecosystems along an aridity gradient
ثبت نشده
چکیده
Spatially heterogeneous ecosystems form a majority of land types in the vast drylands of the globe. To evaluate climate-change effects on CO2 fluxes in such ecosystems, it is critical to understand the relative responses of each ecosystem component (microsite). We investigated soil respiration (Rs) at four sites along an aridity gradient (90– 780 mm mean annual precipitation, MAP) during almost 2 years. In addition, Rs was measured in rainfall manipulations plots at the two central sites where 30% droughting and 30% water supplementation treatments were used over 5 years. Annual Rs was higher by 23% under shrub canopies compared with herbaceous gaps between shrubs, but Rs at both microsites responded similarly to rainfall reduction. Decreasing precipitation and soil water content along the aridity gradient and across rainfall manipulations resulted in a progressive decline in Rs at both microsites, i.e. the drier the conditions, the larger was the effect of reduction in water availability on Rs. Annual Rs on the ecosystem scale decreased at a slope of 256/MAP g C m 2 yr 1 mm 1 (r5 0.97). The reduction in Rs amounted to 77% along the aridity gradient and to 16% across rainfall manipulations. Soil organic carbon (SOC) decreased with declining precipitation, and variation in SOC stocks explained 77% of the variation in annual Rs across sites, rainfall manipulations and microsites. This study shows that rainfall manipulations over several years are a useful tool for experimentally predicting climate-change effects on CO2 fluxes for time scales (such as approximated by aridity gradients) that are beyond common research periods. Rainfall reduction decreases rates of Rs not only by lowering biological activity, but also by drastically reducing shrub cover. We postulate that future climate change in heterogeneous ecosystems, such as Mediterranean and deserts shrublands will have a major impact on Rs by feedbacks through changes in vegetation structure.
منابع مشابه
Effects of climate change on soil respiration and carbon processing in Mediterranean and semi-arid regions: An experimental approach
Recent regional climate-change models indicated significant changes in the temporal and spatial distribution of rainfall in the Mediterranean-Basin region. Understanding the consequences of rainfall alterations for soil respiration and carbon processing in these regions is essential, considering their crucial functions for soil fertility and ecosystem functioning. Our aim was to evaluate the ef...
متن کاملFrom desert to Mediterranean rangelands: will increasing drought and inter-annual rainfall variability affect herbaceous annual primary productivity?
Climate change is predicted to alter the rainfall regime in the Eastern Mediterranean Basin: total annual rainfall will decrease, while seasonal and inter-annual variation in rainfall will increase. Such changes in the rainfall regime could potentially lead to large-scale changes in aboveground net primary productivity (ANPP) in the region.We conducted a data-driven evaluation of herbaceous ANP...
متن کاملOn soil moisture–vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems
[1] Soil moisture is the environmental variable synthesizing the effect of climate, soil, and vegetation on the dynamics of water-limited ecosystems. Unlike abiotic factors (e.g., soil texture and rainfall regime), the control exerted by vegetation composition and structure on soil moisture variability remains poorly understood. A number of field studies in dryland landscapes have found higher ...
متن کاملThe economic impact of global climate change on Mediterranean rangeland ecosystems: A Space-for-Time approach
Article history: Received 6 July 2005 Received in revised form 11 October 2005 Accepted 21 October 2005 Available online 4 January 2006 Global Climate Change (GCC) can bring about changes in ecosystems and consequently in their services value. Here we show that the urban population in Israel values the green landscape of rangelands in the mesic Mediterranean climate region and is willing to pay...
متن کاملAridity Modulates N Availability in Arid and Semiarid Mediterranean Grasslands
While much is known about the factors that control each component of the terrestrial nitrogen (N) cycle, it is less clear how these factors affect total N availability, the sum of organic and inorganic forms potentially available to microorganisms and plants. This is particularly true for N-poor ecosystems such as drylands, which are highly sensitive to climate change and desertification proces...
متن کامل