Multivariate probit regression using simulated maximum likelihood

نویسندگان

  • Lorenzo Cappellari
  • Stephen P. Jenkins
چکیده

We discuss the application of the GHK simulation method for maximum likelihood estimation of the multivariate probit regression model and describe and illustrate a Stata program mvprobit for this purpose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Appendix A5: Simulated maximum likelihood estimation of the trivariate probit model

Calculation of Multivariate Normal Probabilities by Simulation, with Applications to Maximum Simulated Likelihood Estimation We discuss methods for calculating multivariate normal probabilities by simulation and two new Stata programs for this purpose: -mdrawsfor deriving draws from the standard uniform density using either Halton or pseudo-random sequences, and an egen function -mvnp()for calc...

متن کامل

Convenient estimators for the panel probit model:

Bertschek and Lechner (1998) propose several variants of a GMM estimator based on the period specific regression functions for the panel probit model. The analysis is motivated by the complexity of maximum likelihood estimation and the possibly excessive amount of time involved in maximum simulated likelihood estimation. But, for applications of the size considered in their study, full likeliho...

متن کامل

Convenient Estimators for the Panel Probit Model: Further Results

Bertschek and Lechner (1998) propose several variants of a GMM estimator based on the period specific regression functions for the panel probit model. The analysis is motivated by the complexity of maximum likelihood estimation and the possibly excessive amount of time involved in maximum simulated likelihood estimation. But, for applications of the size considered in their study, full likeliho...

متن کامل

Probit models: Regression parameter estimation using the ML principle despite misspecification of the correlation structure

In this paper it is shown that using the maximum likelihood ML prin ciple for the estimation of multivariate probit models leads to consistent and normally distributed pseudo maximum likelihood regression parame ter estimators PML estimators even if the true correlation structure of the responses is misspeci ed As a consequence e g the PML estimator of the random e ects probit model may be used...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007