Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion
نویسندگان
چکیده
Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the "outer shape" of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of ~10 nm diameter containing a lipid bilayer ~5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials.
منابع مشابه
Static and dynamic properties of phospholipid bilayer nanodiscs.
Nanodiscs are phospholipid-protein complexes which are relevant to nascent high-density lipoprotein and are applicable as a drug carrier and a tool to immobilize membrane proteins. We evaluated the structure and dynamics of the nanoparticles consisting of dimyristoylphosphatidylcholine (DMPC) and apolipoprotein A-I (apoA-I) with small-angle neutron scattering (SANS) and fluorescence methods and...
متن کاملApplications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins.
Phospholipid bilayer Nanodiscs are novel model membranes derived from high-density lipoprotein particles and have proven to be useful in studies of membrane proteins. Membrane protein enzymology has been hampered by the inherent insolubility of membrane proteins in aqueous environments and has necessitated the use of model membranes such as liposomes and detergent-stabilized micelles. Current m...
متن کاملConformational transitions in the membrane scaffold protein of phospholipid bilayer nanodiscs.
Phospholipid bilayer nanodiscs are model membrane systems that provide an environment where membrane proteins are highly stable and monodisperse without the use of detergents or liposomes. Nanodiscs consist of a discoidal phospholipid bilayer encircled by two copies of an amphipathic alpha helical membrane scaffold protein, which is modeled from apolipoprotein A-1. Hydrogen exchange mass spectr...
متن کاملDirect solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers.
One of the biggest challenges in the field of proteomics is obtaining functional membrane proteins solubilized and dispersed into a physiologically relevant environment that maintains the spectrum of in vivo activities. Here we describe a system composed of nanoscale self-assembled particles, termed Nanodiscs, which contain a single phospholipid bilayer stabilized by an encircling membrane scaf...
متن کاملFast Collisional Lipid Transfer Among Polymer-Bounded Nanodiscs
Some styrene/maleic acid (SMA) copolymers solubilise membrane lipids and proteins to form polymer-bounded nanodiscs termed SMA/lipid particles (SMALPs). Although SMALPs preserve a lipid-bilayer core, they appear to be more dynamic than other membrane mimics. We used time-resolved Förster resonance energy transfer and small-angle neutron scattering to determine the kinetics and the mechanisms of...
متن کامل