Convergence Analysis of Gradient Iterations for the Symmetric Eigenvalue Problem

نویسندگان

  • Klaus Neymeyr
  • Evgueni E. Ovtchinnikov
  • Ming Zhou
چکیده

Gradient iterations for the Rayleigh quotient are simple and robust solvers to determine a few of the smallest eigenvalues together with the associated eigenvectors of (generalized) matrix eigenvalue problems for symmetric matrices. Sharp convergence estimates for the Ritz values and Ritz vectors are derived for various steepest descent/ascent gradient iterations. The analysis shows that poorest convergence of the eigenvalue approximations is attained in a three-dimensional invariant subspace; explicit convergence estimates are then derived by means of a mini-dimensional analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superlinear Convergence of Conjugate Gradients

We give a theoretical explanation for superlinear convergence behavior observed while solving large symmetric systems of equations using the conjugate gradient method or other Krylov subspace methods. We present a new bound on the relative error after n iterations. This bound is valid in an asymptotic sense when the size N of the system grows together with the number of iterations. The bound de...

متن کامل

A New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems

In this paper‎, ‎two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS})‎ ‎conjugate gradient method are presented to solve unconstrained optimization problems‎. ‎A remarkable property of the proposed methods is that the search direction always satisfies‎ ‎the sufficient descent condition independent of line search method‎, ‎based on eigenvalue analysis‎. ‎The globa...

متن کامل

A Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation

Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...

متن کامل

Convergence Analysis of Restarted Krylov Subspace Eigensolvers

The A-gradient minimization of the Rayleigh quotient allows to construct robust and fastconvergent eigensolvers for the generalized eigenvalue problem for (A,M) with symmetric and positive definite matrices. The A-gradient steepest descent iteration is the simplest case of more general restarted Krylov subspace iterations for the special case that all step-wise generated Krylov subspaces are tw...

متن کامل

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011