Soil Properties and Spatial Processes Influence Bacterial Metacommunities within a Grassland Restoration Experiment
نویسندگان
چکیده
Metacommunity theory proposes that a collection of local communities are linked by dispersal and the resulting compositions are a product of both niche-based (species sorting) and spatial processes. Determining which of these factors is most important in different habitats can provide insight into the regulation of community assembly. To date, the metacommunity organization of heterotrophic soil bacteria is largely unknown. Spatial variation of soil bacterial communities could arise from (1) the resource heterogeneity produced by plant communities through root exudation and/or litter inputs; (2) the heterogeneity of soil environmental properties; and (3) pure spatial processes, including dispersal limitation and stochastic assembly. Understanding the relative importance of these factors for soil bacterial community structure and function could increase our ability to restore soil communities. We utilized an ongoing tallgrass prairie restoration experiment in northeasternKansas to assess if restoring native plant communities produced changes in bacterial communities 6 years after restoration. We further examined the relative importance of the spatial heterogeneity of plant communities, soil properties, and pure spatial effects for bacterial community structure in the old-field restoration site. We found that soil bacterial communities were not influenced by plant restoration, but rather, by the local heterogeneity of soil environmental properties (16.9% of bacterial community variation) and pure spatial effects (11.1%). This work also stresses the idea that restoring bacterial communities can take many years to accomplish due to the inherent changes that occur to the soil after cultivation and the time it takes for the re-establishment of soil quality.
منابع مشابه
Brief report Differential response of archaeal and bacterial communities to nitrogen inputs and pH changes in upland pasture rhizosphere soil
Grassland management regimens influence the structure of archaeal communities in upland pasture soils, which appear to be dominated by as yet uncultivated non-thermophilic Crenarchaeota. In an attempt to determine which grassland management factors select for particular crenarchaeal community structures, soil microcosm experiments were performed examining the effect of increased pH, application...
متن کاملResponses of vertical soil moisture to rainfall pulses and land uses in a typical loess hilly area, China
Soil moisture plays a key role in vegetation restoration and ecosystem stability in arid and semiarid regions. The response of soil moisture to rainfall pulses is an important hydrological process, which is strongly influenced by land use during the implementation of vegetation restoration. In this study, vertical soil moisture variations of woodland (Pinus tabulaeformis), native grassland (Sti...
متن کاملSoil Bacterial Community Structure and Co-occurrence Pattern during Vegetation Restoration in Karst Rocky Desertification Area
Vegetation restoration has been widely used in karst rocky desertification (KRD) areas of southwestern China, but the response of microbial community to revegetation has not been well characterized. We investigated the diversity, structure, and co-occurrence patterns of bacterial communities in soils of five vegetation types (grassland, shrubbery, secondary forest, pure plantation and mixed pla...
متن کاملDifferential response of archaeal and bacterial communities to nitrogen inputs and pH changes in upland pasture rhizosphere soil.
Grassland management regimens influence the structure of archaeal communities in upland pasture soils, which appear to be dominated by as yet uncultivated non-thermophilic Crenarchaeota. In an attempt to determine which grassland management factors select for particular crenarchaeal community structures, soil microcosm experiments were performed examining the effect of increased pH, application...
متن کاملGrazers structure the bacterial and algal diversity of aquatic metacommunities.
Consumers can have strong effects on the biotic and abiotic dynamics of spatially-structured ecosystems. In metacommunities, dispersing consumers can alter local assembly dynamics either directly through trophic interactions or indirectly by modifying local environmental conditions. In aquatic systems, very little is known about how key grazers, such as Daphnia, structure the microbial diversit...
متن کامل