Interfibrillar shear stress is the loading mechanism of collagen fibrils in tendon.
نویسندگان
چکیده
Despite the critical role tendons play in transmitting loads throughout the musculoskeletal system, little is known about the microstructural mechanisms underlying their mechanical function. Of particular interest is whether collagen fibrils in tendon fascicles bear load independently or if load is transferred between fibrils through interfibrillar shear forces. We conducted multiscale experimental testing and developed a microstructural shear lag model to explicitly test whether interfibrillar shear load transfer is indeed the fibrillar loading mechanism in tendon. Experimental correlations between fascicle macroscale mechanics and microscale interfibrillar sliding suggest that fibrils are discontinuous and share load. Moreover, for the first time, we demonstrate that a shear lag model can replicate the fascicle macroscale mechanics as well as predict the microscale fibrillar deformations. Since interfibrillar shear stress is the fundamental loading mechanism assumed in the model, this result provides strong evidence that load is transferred between fibrils in tendon and possibly other aligned collagenous tissues. Conclusively establishing this fibrillar loading mechanism and identifying the involved structural components should help develop repair strategies for tissue degeneration and guide the design of tissue engineered replacements.
منابع مشابه
Quantification of Interfibrillar Shear Stress in Aligned Soft Collagenous Tissues via Notch Tension Testing
The mechanical function of soft collagenous tissues is largely determined by their hierarchical organization of collagen molecules. While collagen fibrils are believed to be discontinuous and transfer load through shearing of the interfibrillar matrix, interfibrillar shear stresses have never been quantified. Scaling traditional shear testing procedures down to the fibrillar length scale is imp...
متن کاملCollagen in connective tissue: from tendon to bone.
Bone and tendon are complex hierarchical structures (Kastelic et al., 1978; Lakes, 1993; Martin et al., 1998; Weiner and Traub, 1992) which are interconnected to fulfill their biomechanical function. In tendon, filamentous collagen fibrils, which make up collagen fibers, are the main structural elements. In bone, the basic building blocks are collagen fibrils and crystals of carbonate apatite. ...
متن کاملCollagen self-assembly and the development of tendon mechanical properties.
The development of the musculoskeleton and the ability to locomote requires controlled cell division as well as spatial control over deposition of extracellular matrix. Self-assembly of procollagen and its final processing into collagen fibrils occurs extracellularly. The formation of crosslinked collagen fibers results in the conversion of weak liquid-like embryonic tissues to tough elastic so...
متن کاملCollagen fibril bundles: a branching assembly unit in tendon morphogenesis.
The assembly, deposition and organization of collagen fibril bundles and their composite fibrils were studied during morphogenesis of the chick embryo tendon using electron microscopy, serial sections and computer-assisted three-dimensional reconstruction techniques. The 14-day chick embryo is a stage when tendon architecture is being established and rapid changes in the mechanical properties o...
متن کاملTenocyte contraction induces crimp formation in tendon-like tissue.
Tendons are composed of longitudinally aligned collagen fibrils arranged in bundles with an undulating pattern, called crimp. The crimp structure is established during embryonic development and plays a vital role in the mechanical behaviour of tendon, acting as a shock-absorber during loading. However, the mechanism of crimp formation is unknown, partly because of the difficulties of studying t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 10 6 شماره
صفحات -
تاریخ انتشار 2014