A modified particle swarm optimizer with dynamic adaptation

نویسندگان

  • Xueming Yang
  • Jinsha Yuan
  • Jiangye Yuan
  • Huina Mao
چکیده

This paper proposes a modified particle swarm optimization algorithm with dynamic adaptation. In this algorithm, a modified velocity updating formula of the particle is used, where the randomness in the course of updating particle velocity is relatively decreased and the inertia weight of each particle is different. Moreover, this algorithm introduces two parameter describing the evolving state of the algorithm, the evolution speed factor and aggregation degree factor. By analyzing the influence of two parameters on the PSO search ability, a new strategy is presented that the inertia weight dynamically changes based on the run and evolution state. In the strategy the inertia weight is given by a function of evolution speed factor and aggregation degree factor, and the value of inertia weight is dynamically adjusted according to the evolution speed and aggregation degree. The feature of the proposed algorithm is analyzed and several testing functions are performed in simulation study. Experimental results show that, the proposed algorithm remarkably improves the ability of PSO to jump out of the local optima and significantly enhance the convergence precision. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paper Title (use style: paper title)

This paper presents a dynamic particle swarm optimization based search for optimal fusion configuration of sensors in distributed detection network in presence of a nonstationary binary symmetric channel. The wireless channel in sensor networks is a non-stationary random process, which moves the optima of the original problem, otherwise static. The optimal fusion configuration minimizes the pro...

متن کامل

A Modified Particle Swarm Optimizer - Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., Th

In this paper, we introduce a new parameter, called inertia weight, into the original particle swarm optimizer. Simulations have been done to illustrate the signilicant and effective impact of this new parameter on the particle swarm optimizer.

متن کامل

Tracking Changing Extrema with Particle Swarm Optimizer

The modification of the Particle Swarm Optimizer has been shown to be effective in locating a changing extrema. In this paper we investigate the effectiveness of the modified PSO in tracking changing extrema over time. We demonstrate that a modified PSO is reliable and accurate in tracking a continuously changing solution.

متن کامل

Particle Swarm Optimizer with Time-Varying Parameters based on a Novel Operator

This paper proposes a time-varying particle swarm optimizer based on our earlier work which introduces a novel operator (leap operator). Two new parameters are recommended in leap operator to prevent premature convergence. With these two parameters, a new modification named LPSO is constructed. Since the values of the 2 parameters are not easy to determine, in this paper, they are modified as t...

متن کامل

The landscape adaptive particle swarm optimizer

Several modified particle swarm optimizers are proposed in this paper. In DVPSO, a distribution vector is used in the update of velocity. This vector is adjusted automatically according to the distribution of particles in each dimension. In COPSO, the probabilistic use of a ‘crossing over’ update is introduced to escape from local minima. The landscape adaptive particle swarm optimizer (LAPSO) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 189  شماره 

صفحات  -

تاریخ انتشار 2007