The differential effects of unihemispheric and bihemispheric tDCS over the inferior frontal gyrus on proactive control.
نویسندگان
چکیده
This study examined the effects of bihemispheric and unihemispheric transcranial Direct Current Stimulation (tDCS) over the inferior frontal gyrus (IFG) on proactive control. Sixteen participants were randomized to receive (i) bihemispheric tDCS, with a 35cm2 anodal electrode of the right IFG and a 35cm2 cathode electrode of left IFG or (ii) unihemispheric tDCS, with a 35cm2 anodal electrode of the right IFG and a 100cm2 electrode of the left IFG or (iii) sham tDCS, while performing a prepotent inhibition task. There were significant speed-accuracy tradeoff effects in terms of switch costs: unihemispheric tDCS significantly decreased the accuracy when compared to bihemispheric, and sham tDCS, while increased response time when comparing to bihemispheric and sham tDCS. The computational model showed a symmetrical field intensity for the bihemispheric tDCS montage, and an asymmetrical for the unihemispheric tDCS montage. This study confirms that unihemispheric tDCS over the rIFG has a significant impact on response inhibition. The lack of results of bihemispheric tDCS brings two important findings for this study: (i) left IFG seems to be also critically associated with inhibitory response control, and (ii) these results highlight the importance of considering the dual effects of tDCS when choosing the electrode montage.
منابع مشابه
Differential Effects of Unihemispheric Concurrent Dual-Site and Conventional tDCS on Motor Learning: A Randomized, Sham-Controlled Study
Introduction: Based on the literature, unihemispheric concurrent dual-site anodal transcranial Direct Current Stimulation (a-tDCSUHCDS) of primary Motor cortex (M1) and Dorsolateral Prefrontal Cortex (DLPFC) would be more efficient than conventional a-tDCS of M1 to induce larger and longer-lasting M1 corticospinal excitability. The main objective of the present study was to compare the effects ...
متن کاملImproving Interference Control in ADHD Patients with Transcranial Direct Current Stimulation (tDCS)
The use of transcranial direct current stimulation (tDCS) in patients with attention deficit hyperactivity disorder (ADHD) has been suggested as a promising alternative to psychopharmacological treatment approaches due to its local and network effects on brain activation. In the current study, we investigated the impact of tDCS over the right inferior frontal gyrus (rIFG) on interference contro...
متن کاملDifferential effects of dual and unihemispheric motor cortex stimulation in older adults.
Bihemispheric transcranial direct current stimulation (tDCS) is thought to upregulate excitability of the primary motor cortex (M1) using anodal stimulation while concurrently downregulating contralateral M1 using cathodal stimulation. This "dual" tDCS method enhances motor learning in healthy subjects and facilitates motor recovery after stroke. However, its impact on motor system activity and...
متن کاملActivation of Inhibition: Diminishing Impulsive Behavior by Direct Current Stimulation over the Inferior Frontal Gyrus
A common feature of human existence is the ability to reverse decisions after they are made but before they are implemented. This cognitive control process, termed response inhibition, refers to the ability to inhibit an action once initiated and has been localized to the right inferior frontal gyrus (rIFG) based on functional imaging and brain lesion studies. Transcranial direct current stimul...
متن کاملTranscranial stimulation over the left inferior frontal gyrus increases false alarms in an associative memory task in older adults
BACKGROUND Transcranial direct current stimulation (tDCS) is a potential tool for alleviating various forms of cognitive decline, including memory loss, in older adults. However, past effects of tDCS on cognitive ability have been mixed. One important potential moderator of tDCS effects is the baseline level of cognitive performance. METHODS We tested the effects of tDCS on face-name associat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience research
دوره شماره
صفحات -
تاریخ انتشار 2017