All Liouville Numbers are Transcendental
نویسندگان
چکیده
In this Mizar article, we complete the formalization of one of the items from Abad and Abad’s challenge list of “Top 100 Theorems” about Liouville numbers and the existence of transcendental numbers. It is item #18 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http: //www.cs.ru.nl/F.Wiedijk/100/. Liouville numbers were introduced by Joseph Liouville in 1844 [15] as an example of an object which can be approximated “quite closely” by a sequence of rational numbers. A real number x is a Liouville number iff for every positive integer n, there exist integers p and q such that q > 1 and
منابع مشابه
Liouville numbers
In this work, we define the concept of Liouville numbers as well as the standard construction to obtain Liouville numbers and we prove their most important properties: irrationality and transcendence. This is historically interesting since Liouville numbers constructed in the standard way where the first numbers that were proven to be transcendental. The proof is very elementary and requires on...
متن کاملTranscendence of e and π
When proving it is impossible to ‘square’ the circle by a ruler–and–compass construction we have to appeal to the theorem that π is transcendental. It is our goal to prove this theorem. Since the algebraic numbers are the roots of integer polynomials, they are countably many. Cantor’s proof in 1874 of the uncountability of the real numbers guaranteed the existence of (uncountably many) transcen...
متن کاملFormalizing a Proof that e is Transcendental
A transcendental number is one that is not the root of any non-zero polynomial having integer coefficients. It immediately follows that no rational number q is transcendental, since q can be written as a/b where a and b are integers, and thus q is a root of bx − a. Furthermore, the transcendentals are a proper subset of the irrationals, since for example the irrational √ 2 is a root of x − 2. T...
متن کاملContinued fractions and transcendental numbers
It is widely believed that the continued fraction expansion of every irrational algebraic number α either is eventually periodic (and we know that this is the case if and only if α is a quadratic irrational), or it contains arbitrarily large partial quotients. Apparently, this question was first considered by Khintchine in [22] (see also [6,39,41] for surveys including a discussion on this subj...
متن کاملA devil’s staircase from rotations and irrationality measures for Liouville numbers∗
From Sturmian and Christoffel words we derive a strictly increasing function ∆ : [0,∞) → R. This function is continuous at every irrational point, while at rational points, left-continuous but not right-continuous. Moreover, it assumes algebraic integers at rationals, and transcendental numbers at irrationals. We also see that the differentiation of ∆ distinguishes some irrationality measures o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Formalized Mathematics
دوره 25 شماره
صفحات -
تاریخ انتشار 2017