Aromaticity of Carbon Nanotubes
نویسندگان
چکیده
Carbon nanotubes are composed of cylindrical graphite sheets. Both nanotubes and graphite sheets are benzenoid derivatives composed of sp2 carbon atoms arranged in a hexagonal pattern. Therefore both systems are aromatic. The extent of the aromatic character of a molecule G (here benzenoids) can be explained in terms of the number of possible Kekulé structures in G. In this work the Kekulé structures in carbon nanotubes and the corresponding, rectangular, graphite-sheets the tubes might originate from, were enumerated. It was shown that (2,2), (3,3), and (4,4) carbon nanotubes are more aromatic than the corresponding, rectangular, planar structures. This explains why it might be more difficult to saturate nanotubes by addition reactions than the respective, "narrow", graphite sheets.
منابع مشابه
Effects of Structure and Partially Localization of the π Electron Clouds of Single-Walled Carbon Nanotubes on the Cation-π Interactions
A C102H30 graphene sheet has been rolled up to construct Single-Walled Carbon NanoTube Fragments (SWCNTFs) as parts of armchair carbon nanotubes by computational quantum chemistry methods. Non-covalent cation-π interactions of the Na+ cation on the central rings of SWCNTFs have investigated. The binding energies of the Na+-SWCNTF complexes versus ...
متن کاملElectronic and Aromatic properties of Graphene and Nanographenes of various kinds:
Using suitable Density functional theory (DFT) methods and models of various sizes and symmetries, we have obtained the aromaticity pattern of infinite Graphene, which is an intrinsically collective effect, by a process of “spatial” evolution. Using a similar process backwards we obtain the distinct aromaticity pattern(s) of finite nanographenes, graphene dots, antidots, and graphene nanoribbon...
متن کاملTheoretical studies on structures, 13C NMR chemical shifts, aromaticity, and chemical reactivity of finite-length open-ended armchair single-walled carbon nanotubes.
The geometries, chemical shifts, aromaticity, and reactivity of finite-length open-ended armchair single-walled carbon nanotubes (SWCNTs) have been studied within density functional theory. The widely used model of capping hydrogen atoms at the open ends of a SWCNT changes the chemical activity of the SWCNT and destabilizes the frontier molecular orbitals. The edge pi-orbital of the open ends e...
متن کاملElectronic structure and chemical reactivity of carbon nanotubes: a chemist's view.
A qualitative description of the electronic structure of single-wall carbon nanotubes from a chemical perspective is presented using real-space orbital representations and traditional concepts of aromaticity, orbital symmetry and frontier orbitals. This unusual view of carbon nanotubes allows us to merge the solid-state physics description of band structures with the molecular orbitals framewor...
متن کاملExploring the ring current of carbon nanotubes by first-principles calculations
Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the...
متن کاملEvaluation of the Aromaticity of a Non-Planar Carbon Nano-Structure by Nucleus-Independent Chemical Shift Criterion: Aromaticity of the Nitrogen- Doped Corannulene
Substitution of two or four carbon atoms by nitrogen in the corannulene molecule as a carbon nanostructure was done and the obtained structures were optimized at MP2/6-31G(d) level of theory. Calculations of the nucleus-independent chemical shift (NICS) were performed to analyze the aromaticity of the corannulene rings and its derivatives upon doping with N at B3LYP/6-31G(d) level of theory. Re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical information and modeling
دوره 47 3 شماره
صفحات -
تاریخ انتشار 2007