Mycobacteriophage Endolysins: Diverse and Modular Enzymes with Multiple Catalytic Activities
نویسندگان
چکیده
The mycobacterial cell wall presents significant challenges to mycobacteriophages--viruses that infect mycobacterial hosts--because of its unusual structure containing a mycolic acid-rich mycobacterial outer membrane attached to an arabinogalactan layer that is in turn linked to the peptidoglycan. Although little is known about how mycobacteriophages circumvent these barriers during the process of infection, destroying it for lysis at the end of their lytic cycles requires an unusual set of functions. These include Lysin B proteins that cleave the linkage of mycolic acids to the arabinogalactan layer, chaperones required for endolysin delivery to peptidoglycan, holins that regulate lysis timing, and the endolysins (Lysin As) that hydrolyze peptidoglycan. Because mycobacterial peptidoglycan contains atypical features including 3→3 interpeptide linkages, it is not surprising that the mycobacteriophage endolysins also have non-canonical features. We present here a bioinformatic dissection of these lysins and show that they are highly diverse and extensively modular, with an impressive number of domain organizations. Most contain three domains with a novel N-terminal predicted peptidase, a centrally located amidase, muramidase, or transglycosylase, and a C-terminal putative cell wall binding domain.
منابع مشابه
Characterization of Modular Bacteriophage Endolysins from Myoviridae Phages OBP, 201ϕ2-1 and PVP-SE1
Peptidoglycan lytic enzymes (endolysins) induce bacterial host cell lysis in the late phase of the lytic bacteriophage replication cycle. Endolysins OBPgp279 (from Pseudomonas fluorescens phage OBP), PVP-SE1gp146 (Salmonella enterica serovar Enteritidis phage PVP-SE1) and 201φ2-1gp229 (Pseudomonas chlororaphis phage 201φ2-1) all possess a modular structure with an N-terminal cell wall binding d...
متن کاملDomain shuffling and module engineering of Listeria phage endolysins for enhanced lytic activity and binding affinity
Bacteriophage endolysins are peptidoglycan hydrolases employed by the virus to lyse the host at the end of its multiplication phase. They have found many uses in biotechnology; not only as antimicrobials, but also for the development of novel diagnostic tools for rapid detection of pathogenic bacteria. These enzymes generally show a modular organization, consisting of N-terminal enzymatically a...
متن کاملA Second Endolysin Gene Is Fully Embedded In-Frame with the lysA Gene of Mycobacteriophage Ms6
Mycobacteriophages are dsDNA viruses that infect mycobacterial hosts. The mycobacteriophage Ms6 accomplishes lysis by producing two cell wall hydrolytic enzymes, Lysin A (LysA) that possesses a central peptidoglycan recognition protein (PGRP) super-family conserved domain with the amidase catalytic site, that cleaves the amide bond between the N-acetylmuramic acid and L-alanine residues in the ...
متن کاملDUF3380 Domain from a Salmonella Phage Endolysin Shows Potent N-Acetylmuramidase Activity.
UNLABELLED Bacteriophage-encoded endolysins are highly diverse enzymes that cleave the bacterial peptidoglycan layer. Current research focuses on their potential applications in medicine, in food conservation, and as biotechnological tools. Despite the wealth of applications relying on the use of endolysin, little is known about the enzymatic properties of these enzymes, especially in the case ...
متن کاملAntimycobacterial Activities of Endolysins Derived From a Mycobacteriophage, BTCU-1.
The high incidence of Mycobacterium infection, notably multidrug-resistant M. tuberculosis infection, has become a significant public health concern worldwide. In this study, we isolate and analyze a mycobacteriophage, BTCU-1, and a foundational study was performed to evaluate the antimycobacterial activity of BTCU-1 and its cloned lytic endolysins. Using Mycobacterium smegmatis as host, a myco...
متن کامل