Partial-sum Analogues of the Rogers–ramanujan Identities

نویسنده

  • Barry McCoy
چکیده

A new polynomial analogue of the Rogers–Ramanujan identities is proven. Here the product-side of the Rogers–Ramanujan identities is replaced by a partial theta sum and the sum-side by a weighted sum over Schur polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial-Sum Analogues of the Rogers - Ramanujan Identities

A new type of polynomial analogue of the Rogers–Ramanujan identities is proven. Here the product-side of the Rogers–Ramanujan identities is replaced by a partial theta sum and the sum-side by a weighted sum over Schur polynomials.

متن کامل

Some Modular Relations Analogues to the Ramanujan's Forty Identities with Its Applications to Partitions

Recently, the authors have established a large class of modular relations involving the Rogers-Ramanujan type functions J(q) andK(q) of order ten. In this paper, we establish further modular relations connecting these two functions with Rogers-Ramanujan functions, Göllnitz-Gordon functions and cubic functions, which are analogues to the Ramanujan’s forty identities for Rogers-Ramanujan function...

متن کامل

Tribasic Integrals and Identities of Rogers-ramanujan Type

Abstract. Some integrals involving three bases are evaluated as infinite products using complex analysis. Many special cases of these integrals may be evaluated in another way to find infinite sum representations for these infinite products. The resulting identities are identities of Rogers-Ramanujan type. Some integer partition interpretations of these identities are given. Generalizations of ...

متن کامل

Supernomial Coefficients , Bailey ’ S Lemma and Rogers – Ramanujan - Type Identities

An elementary introduction to the recently introduced A2 Bailey lemma for supernomial coefficients is presented. As illustration, some A2 q-series identities are (re)derived which are natural analogues of the classical (A1) Rogers–Ramanujan identities and their generalizations of Andrews and Bressoud. The intimately related, but unsolved problems of supernomial inversion, An−1 and higher level ...

متن کامل

New Identities of Hall-Littlewood Polynomials and Rogers-Ramanujan Type

where a = 0 or 1, are among the most famous q-series identities in partitions and combinatorics. Since their discovery the Rogers-Ramanujan identities have been proved and generalized in various ways (see [2, 4, 5, 13] and the references cited there). In [13], by adapting a method of Macdonald for calculating partial fraction expansions of symmetric formal power series, Stembridge gave an unusu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015