Some Open Problems and Conjectures Associated with the Invariant Subspace Problem∗
نویسندگان
چکیده
There is a subtle difference as far as the invariant subspace problem is concerned for operators acting on real Banach spaces and operators acting on complex Banach spaces. For instance, the classical hyperinvariant subspace theorem of V. I. Lomonosov [10] while true for complex Banach spaces is false for real Banach spaces. When one starts with a bounded operator on a real Banach space and then considers some “complexification technique” to extend the operator to a complex Banach space, there seems to be no pattern that indicates any connection between the invariant subspaces of the “real” operator and those of its “complexifications.” The purpose of this note is to examine two complexification methods of an operator T acting on a real Banach space and present some questions regarding the invariant subspaces of T and those of its complexifications. AMS Subject Classification Numbers: 47A15, 47C05, 47L20, 46B99
منابع مشابه
The Invariant Subspace Problem and Its Main Developments
The famous mathematician and computer scientist J. von Neumann initiated the research of the invariant subspace problem and its applications. In this paper, we discus the invariant subspace problem and its main developments. In particular, we discus some open sub-problem of the invariant subspace problem.
متن کاملSignature submanifolds for some equivalence problems
This article concerned on the study of signature submanifolds for curves under Lie group actions SE(2), SA(2) and for surfaces under SE(3). Signature submanifold is a regular submanifold which its coordinate components are differential invariants of an associated manifold under Lie group action, and therefore signature submanifold is a key for solving equivalence problems.
متن کاملWeak*-closed invariant subspaces and ideals of semigroup algebras on foundation semigroups
Let S be a locally compact foundation semigroup with identity and be its semigroup algebra. Let X be a weak*-closed left translation invariant subspace of In this paper, we prove that X is invariantly complemented in if and only if the left ideal of has a bounded approximate identity. We also prove that a foundation semigroup with identity S is left amenab...
متن کاملOn some variational problems in the theory of unitarily invariant norms and Hadamard products
We deal with two recent conjectures of R.-C. Li [Linear Algebra Appl. 278 (1998) 317– 326], involving unitarily invariant norms and Hadamard products. In the particular case of the Frobenius norm, the first conjecture is known to be true, whereas the second is still an open problem. In fact, in this paper we show that the Frobenius norm is essentially the only invariant norm which may comply wi...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کامل