3-fold Log Flips According to v. v. Shokurov

نویسندگان

  • Hiromichi Takagi
  • HIROMICHI TAKAGI
چکیده

We review §8 of V. V. Shokurov’s paper ”3-fold log flips”.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Termination of 4-fold Semi-stable Log Flips

In this paper, we prove the termination of 4-fold semistable log flips under the assumption that there always exist 4-fold (semi-stable) log flips.

متن کامل

Termination of 4-fold Canonical Flips

We prove the termination of 4-fold canonical flips. This paper is a supplement of [KMM, Theorem 5-1-15] and [M, Main Theorem 2.1]. We prove that a sequence of 4-fold log flips for canonical pairs terminates after finitely many steps. Let us recall the definition of canonical flips, which is slightly different from the usual one (cf. [S, (2.11) Adjoint Diagram]). Definition 1 (Canonical flip). L...

متن کامل

Two Two-dimensional Terminations

Varieties with log terminal and log canonical singularities are considered in the Minimal Model Program, see [KMM] for introduction. In [SH2] it was conjectured that many of the interesting sets, associated with these varieties have something in common: they satisfy the ascending chain condition, which means that every increasing chain of elements terminates (in [SH2] it was called the upper se...

متن کامل

Semistable 3-fold Flips

1 Introduction. In this short note, I will give a proof of the existence of semistable 3-fold flips, which does not use the classification of log terminal (i.e., quotient) surface singularities. This permits us to avoid a calculation, which is a sort of logical bottleneck in all the existing approaches to semistable 3-fold flips ([Ka1 pg. 158–159], [Sh pg. 386–389], [Ka3 pg. 483–486]), however ...

متن کامل

Birationally rigid Fano hypersurfaces

We prove that a smooth Fano hypersurface V = V M ⊂ P M , M ≥ 6, is birationally superrigid. In particular, it cannot be fibered into uniruled varieties by a non-trivial rational map and each birational map onto a minimal Fano variety of the same dimension is a biregular isomorphism. The proof is based on the method of maximal singularities combined with the connectedness principle of Shokurov a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998